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An automated framework for 
3D serous pigment epithelium 
detachment segmentation in SD-
OCT images
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Chenglin Yan3, Liang Li3 & Xinjian Chen1

Pigment epithelium detachment (PED) is an important clinical manifestation of multiple chorioretinal 
diseases, which can cause loss of central vision. In this paper, an automated framework is proposed to 
segment serous PED in SD-OCT images. The proposed framework consists of four main steps: first, a 
multi-scale graph search method is applied to segment abnormal retinal layers; second, an effective 
AdaBoost method is applied to refine the initial segmented regions based on 62 extracted features; 
third, a shape-constrained graph cut method is applied to segment serous PED, in which the foreground 
and background seeds are obtained automatically; finally, an adaptive structure elements based 
morphology method is applied to remove false positive segmented regions. The proposed framework 
was tested on 25 SD-OCT volumes from 25 patients diagnosed with serous PED. The average true 
positive volume fraction (TPVF), false positive volume fraction (FPVF), dice similarity coefficient (DSC) 
and positive predictive value (PPV) are 90.08%, 0.22%, 91.20% and 92.62%, respectively. The proposed 
framework can provide clinicians with accurate quantitative information, including shape, size and 
position of the PED region, which can assist clinical diagnosis and treatment.

Optical coherence tomography (OCT) was first introduced in 1991 by Huang et al.1. Recently, spectral domain 
(SD) OCT has been used in diagnosis of many ocular diseases, including age-related macular degeneration 
(AMD), glaucoma and diabetic macular edema2. SD-OCT has many advantages comparing to traditional OCT, 
such as high resolution, real 3D volumetric image of retina and manifestation of more comprehensive ana-
tomical structures. PED is an important feature of several chorioretinal diseases, such as, AMD, central serous 
chorioretinopathy and polypoidal choroidal vasculopathy3,4. PED can cause damage to central vision finally5,6. 
Generally, PED can be classified into three types: serous, drusenoid and fibrovascular. Though the three types of 
PED share several basic similarities, there are many distinct differences in clinical and prognostic aspects. For 
example, the serous PED tends to be a smooth, arch-like shape region with retinal pigment epithelium (RPE) 
deformation3. As shown in Fig. 1, the serous PED region is located between RPE floor and Bruch’s membrane 
(BM). Quantitative information of serous PED, including accurate boundary, size, position and total number, 
is important for diagnosis and treatment of the relevant retinal diseases. Therefore, automatic segmentation for 
serous PED objects in SD-OCT is of great clinical significance.

However, automatic segmentation for abnormal retinal structures still remains a challenging task. There are 
two critical problems for this task. First, the retinal morphology and intensity may have changed severely result-
ing from the abnormal structures. Therefore, the prior knowledge about morphological and optical features used 
for normal retinal image segmentation may not be valid. Second, the segmentation performance is affected by 
the blurred boundary, various shapes and random position of the abnormal structures. For retinal images anal-
ysis, an important pre-processing step for region segmentation is retinal layers segmentation. The retinal lay-
ers segmentation result can serve as constraints for automatic detection or segmentation of the abnormalities. 
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Previously, many effective methods for automatic retinal layers segmentation on normal retinal images have 
been reported7–11. However, those segmentation methods tend to fail when the retina has serious deformation. 
Then some works aimed to segment abnormal retinal layers with relatively serious deformation of retinal struc-
tures12–16. The method in ref. 15 reported good performance of segmenting abnormal retinal layers, however, the 
accuracy of segmenting abnormal regions still can be improved.

Previously, some related works have been presented for detecting or segmenting retinal abnormalities. 
Fernández used a deformable model to roughly outline the fluid-filled regions from AMD patients, but its initiali-
zation result was obtained manually in 2D OCT images17. Ahlers et al. detected the location and measured the vol-
ume of the fibrovascular PED by using the high-definition OCT tool18. Quellec et al. detected automatically the 2D 
footprints of the symptomatic exudate-associated derangements (SEAD) in SD-OCT images by using a classifica-
tion method, and used an interactive computer-aided method to define the 3D SEAD19. Dolejši et al. segmented 
semi-automatically the 3D SEADs associated with wet AMD by using a two-step segmentation method, and its 
initialization result was obtained manually20. Gregori et al. measured the drusen area and volume in eyes with 
non-exudative AMD from 74 patients by using the SD-OCT imaging21. Penha et al. measured the PED area and 
volume by using the Cirrus SD-OCT imaging system and its automatic measurement algorithm22. Wilkins et al.  
used a retinal cyst segmentation technique to segment cystoids fluid regions automatically in OCT images23. Chen 
et al. used an automated framework to segment 3D SEADs in macula-centered 3D OCT images13. Zheng et al.  
used an interactive segmentation method to quantify the intraretinal and subretinal fluids in retinal SD-OCT 
volume scans from 37 patients with exudative AMD24. Ding et al. detected the sub-retinal fluid and sub-retinal 
pigment epithelium fluid automatically by using a segmentation learning pipeline25.

However, although the above related works have been reported in recent years, the automatic segmentation for 
PED is still a challenging problem. The severe deformation, various shapes and random position of serous PED 
make automatic segmentation even more difficult. In this paper, we propose an automated framework to segment 
serous PED by effectively combining the multi-scale graph search, shape-constrained graph cut and mathematical 
morphology algorithm. The proposed framework can provide clinicians with accurate quantitative information, 
including shape, size and position of the PED region, which can assist diagnosis and treatment.

The contributions of this work are summarized as follows. (1) A novel automated framework is proposed for 
3D serous PED segmentation in SD-OCT images, and the segmentation result demonstrates the efficiency and 
feasibility of the proposed framework. (2) The foreground and background seeds used in the shape-constrained 
graph cut algorithm are obtained automatically, which makes the proposed framework automatic. (3) An effective 
AdaBoost method is applied to remove false positive segmented regions in the initial segmentation results. (4) 
The mathematical morphology method is applied to refine the automatic segmentation result obtained from the 
shape-constrained graph cut method, in which the structure element is chosen adaptively.

Results
Dataset. The proposed framework was tested on a dataset of 25 SD-OCT images from 25 patients diagnosed 
with serous PED. Those SD-OCT images were obtained using the Topcon 3D-OCT 1000 (Topcon corporation, 
Tokyo, Japan). Each SD-OCT volume contains 512 ×  64 ×  480 voxels with a corresponding voxel size of 11.72 μ 
m ×  93.75μ m ×  3.50 μ m.

Automatic segmentation result of the proposed framework. Figure 2 shows the final automatic seg-
mentation results on B-scans of different SD-OCT images. The first column shows small serous PED regions; the 
second column shows medium serous PED regions; the third column shows big serous PED regions; and the last 
column shows not only serous PED but also other co-existed fluid-associated abnormalities. The serous PEDs in 
the last column with other complications are more challenging to get accurate segmented regions, because those 
fluid-filled regions with similar intensity need to be distinguished from serous PED regions. Figure 3 shows two 
examples of the 3D visualization of the serous PED segmentation results, which provide stereoscopic information 
of serous PEDs for doctors.

Comparison of segmentation performance. Table 1 shows the segmentation performance. The mean 
and standard deviation of TPVF, FPVF, DSC and PPV, defined by Equation (1)–(4), of the proposed framework 
are about 90.08% ±  5.31%, 0.22% ±  0.38%, 91.20% ±  3.77% and 92.62% ±  4.73%, respectively.

Figure 1. A cross-sectional (B-scan) image of spectral domain optical coherence tomography with serous 
pigment epithelium detachment. 
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Figure 2. The final automatic segmentation results of serous pigment epithelium detachment in different 
subjects. 

Figure 3. 3D visualization of the serous pigment epithelium detachment segmentation results. The red 
regions represent the segmented serous pigment epithelium detachment, green surfaces represent the internal 
limiting membrane surface and blue surfaces represent the Bruch’s membrane surface.
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where VA , VB  and ΩV  are the volume in the automatic segmentation result, ground truth and the total retina 
volume between the ILM and BM retinal layer, respectively. VTP  indicates the volume of the true positive seg-
mented regions and VFP  indicates the volume of the false positive segmented regions.

Comparing to the initial segmentation results, the final segmentation results show statically significantly 
higher FPVF, DSC and PPV (p <  0.05). Although the initial segmentation results get high TPVF, its segmen-
tation results tend to have many false positive segmented regions. Therefore, both DSC and PPV are lower  
(see Table 1). Comparing to the segmentation results in ref. 15, the final segmentation results show slight higher 
TPVF (p =  0.326), and show statically significantly higher FPVF, DSC and PPV (p <  0.05). Figure 4 shows the 
linear regression analysis results and the Bland-Altman plots for the automatic segmentation results versus the 
ground truth I, the automatic segmentation results versus the ground truth II and the ground truth I versus the 
ground truth II, respectively. The figure demonstrates that: (1) A high correlation is obtained comparing the 
ground truth I to the ground truth II (R2 =  0.9991); (2) The automatic segmentation results have strong correla-
tion with the ground truth I (R2 =  0.9991) and the ground truth II (R2 =  0.9976). Therefore, the automatic seg-
mentation results from the proposed framework can replace the expert manual labeling; (3) The Bland-Altman 
figures reveal that the 95% limits of agreement are [− 0.07, 0.05], [− 0.15, 0.09] and [− 0.08, 0.05] for the auto-
matic segmentation results versus the ground truth I, the automatic segmentation results versus the ground truth 
II and the ground truth I versus the ground truth II, respectively.

Discussion
In this paper, an automated framework is proposed for 3D serous PED segmentation in SD-OCT images, which 
effectively combines the multi-scale graph search, shape-constrained graph cut and mathematical morphology 
algorithm. The novelties of this work lie in: (1) an effective AdaBoost algorithm is applied to remove false posi-
tive segmented regions in the initial segmentation results; (2) the foreground and background seeds used in the 
shape-constrained graph cut method are obtained automatically, which makes the proposed framework auto-
matic; (3) an adaptive structure elements based mathematical morphology method is applied to refine the auto-
matic segmentation results. The proposed framework was tested on 25 SD-OCT data from 25 patients diagnosed 
with serous PED. In term of accuracy, the mean and standard deviation of TPVF, FPVF, DSC and PPV for the 
proposed framework are about 90.08% ±  5.31%, 0.22% ±  0.38%, 91.20% ±  3.77% and 92.62% ±  4.73%, respec-
tively. Furthermore, the linear regression analysis shows a strong correlation comparing the automatic segmented 
PED to the ground truth I (R2 =  0.9991) and ground truth II (R2 =  0.9976), respectively.

One limitation of the proposed framework is that feature extraction is implemented in 2D. Because of the large 
variability in shape, size, position, and number of serous PED regions in different B-scans, extracting features is 
implemented B-scan by B-scan, which allows the abrupt change of serous PED regions properties.

The future work will be focused on three aspects to improve the framework. First, for large varied abnormities 
in retina, a more robust multi-scale graph search algorithm is needed to segment retinal layers, which allows the 
abrupt structure deformation in SD-OCT images. Second, the feature extraction can be extended to 3D to obtain 
more context information. Third, this work can be extended for more complicated pathological cases with RPE 
floor deformation or other co-existed fluid-filled abnormalities located above RPE floor, such as, choroidal neo-
vascularization (CNV) segmentation.

In summary, an automated framework is proposed for 3D serous PED segmentation in SD-OCT images. As 
an efficient replacement of manual segmentation, the proposed framework can provide clinicians with accurate 
quantitative information, including shape, size and position of the PED regions, which can assist diagnosis and 
treatment.

True positive 
volume fraction (%)

False positive 
volume fraction (%)

Dice similarity 
coefficient (%)

Positive predictive 
value (%)

Initial result 96.00 ±  5.06 1.95 ±  2.30 59.00 ±  28.05 48.94 ±  29.05

Result in ref. 15 87.10 ±  21.70 0.37 ±  0.54 83.75 ±  20.22 81.20 ±  20.20

Ground truth II 97.46 ±  2.61 0.21 ±  0.35 94.73 ±  2.12 92.20 ±  2.76

Proposed method 90.08 ±  5.31 0.22 ±  0.38 91.20 ±  3.77 92.62 ±  4.73

Table 1. Mean ± standard deviation of the serous pigment epithelium detachment segmentation result 
using the ground truth I as the reference.
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Methods
Method overview. The proposed framework includes three major parts: pre-processing, segmentation and 
post-processing (see the flowchart in Fig. 5). For pre-processing, an improved curvature anisotropic diffusion 
filter is applied to remove speckle noise. For segmentation, first, the multi-scale graph search method is applied 
to segment abnormal retinal layers associated with RPE floor deformation. During this process, BM is estimated 
with convex hull algorithm; second, 62 features are extracted for classification and then an AdaBoost classifier is 
applied to remove false positive initial segmented regions; third, the serous PED regions are segmented by using 
the shape-constrained graph cut method, in which foreground and background seeds are obtained automatically. 
For post-processing, an adaptive structure elements based mathematical morphology method is applied to refine 
the automatic segmentation results.

Denoising. Speckle noise and artifacts are the dominant factors for image quality degrading in SD-OCT 
scans. For poor quality retinal images, the efficiency and accuracy of the segmentation algorithm can decrease 
greatly. The curvature anisotropic diffusion filter can remove speckle noise and artifacts effectively and preserve 
the image boundary well at the same time. Comparing to the typical curvature anisotropic diffusion filtering 
method, a modified curvature diffusion equation (MCDE) is defined as follows26,27.

Figure 4. Correlation (a) and agreement (b) of the volume of retinal pigment epithelium detachment measured 
by automatic segmentation result and ground truth I. Correlation (c) and agreement (d) of the volume of retinal 
pigment epithelium detachment measured by automatic segmentation result and ground truth II. Correlation (e) 
and agreement (f) of the volume of retinal pigment epithelium detachment measured by ground truth I and II.
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where f t is the output image, f  is the input image, ∇ is the gradient operation, and c is the conductance function. 
The conductance represents the gradient magnitude of each pixel in the image, and it is used to reduce the diffu-
sion strength of edge pixels. The denoised result is shown in Fig. 6 (b). Comparing to the original image in 
Fig. 6 (a), the speckle noise is suppressed effectively while the edges are preserved well, which helps abnormal 
retinal layers segmentation.

Multi-scale graph search. The 3D graph search algorithm proposed by Li et al. for optimal surface seg-
mentation28, has been used for normal retinal layers segmentation. However, for abnormal retina with PED, the 
serious deformation of RPE floor and blurred boundary of retinal layers can cause great difficulties for retinal 
layers segmentation15. In order to solve this problem, in this paper, a multi-scale graph search algorithm is applied 
for serous PED retinal layers segmentation. The 3D SD-OCT image is down-sampled by a factor of 2 twice in the 
vertical direction to form three scales: the lowest resolution, the medium resolution and the highest resolution. 
Then, a single surface graph search method is applied in three scales from low resolution to high resolution scale. 
The surface location in the lower resolution can serve as a position constraint for optimal surface location in 
the higher resolution scale. The multi-scale method greatly reduces the searching space of the optimization step 
and therefore enhances the segmentation efficiency. Three retinal surfaces are segmented by using single surface 
graph search method, namely, the inner limited membrane (ILM), roof of photoreceptor ellipsoid zone and RPE 
floor. The ILM and roof of photoreceptor ellipsoid zone have the dark-to-bright transition, while RPE floor has 
the bright-to-dark transition. First, with the most prominent edge in the SD-OCT image, the ILM is segmented, 
because its characteristic is not severely affected by the presence of serous PED. Second, the roof of photoreceptor 
ellipsoid zone and RPE floor are segmented respectively based on the position constraints provided by previous 
segmented retinal surfaces. Both roof of photoreceptor ellipsoid zone and RPE floor tend to have abrupt shape 
change with arch-like shape for serous PED. Therefore, a larger smoothness constraint should be set to capture 
those abrupt shape changes, which is different from normal retinal surfaces segmentation15,16.

Finally, BM under RPE floor, which is not distinct in SD-OCT images, is estimated from the RPE floor by 
finding the lower boundary of its convex hull. For a finite point set P =  {p1, p2, …, pk, …, pn}, the convex hull of 
P is a minimum convex polygon that wraps P. Figure 7 shows the result of retinal layers segmentation with four 
retinal surfaces and its 3D visualization. After getting the four retinal surfaces, the region between the RPE floor 

Figure 5. The flowchart of the proposed framework. 

Figure 6. A cross sectional image before (a) and after (b) denoising.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:21739 | DOI: 10.1038/srep21739

and BM is defined as the initial segmentation result for serous PED. Figure 8 (b) shows one example of the initial 
segmentation results by overlaying the segmented result on the original image, in which the red regions are the 
segmented serous PED regions. Some initial segmentation results may not be accurate due to the possible error 
in RPE floor segmentation and BM estimation resulting from the blurred retinal layers boundary in the original 
images. Some false positive segmented regions can be removed by latter classification method.

Feature extraction. Robust features are critical for successfully segmenting abnormal structures in medical 
images29,30. In this paper, because of the noise, artifact, blurred boundary and serious deformation of abnormal 
retinal structures, extracting useful features is a difficult task. Furthermore, variability in shape, size, position, 
number and texture properties of serous PED further makes the search for robust features more complicated. The 
shape, intensity and texture features are extracted for serous PED in SD-OCT images. The features are extracted 
based on the initial segmentation results for each segmented region. Feature 1 to 17 are the area, perimeter, major 
axis length, minor axis length, major axis length/minor axis length, perimeter/area, eccentricity, orientation, 
Euler number, the number of bright pixels in the segmented region, the diameter of a circle with the same area as 
the segmented region, solidity, extent, convex hull area, max intensity, min intensity and mean intensity. Feature 

Figure 7. The result of retinal layers segmentation. (a) The 2D visualization on a B-scan. The green line, red 
line, yellow line and blue line represent the internal limiting membrane, roof of photoreceptor ellipsoid zone, 
RPE floor and Bruch’s membrane, respectively; (b) The 3D visualization of four segmented retinal surfaces.

Figure 8. The experimental results at different phrases. (a) is one example of the original images, (b) is one 
example of the initial segmentation results, (c) is one example of the classification results, (d) is one example of 
the segmentation results obtained by using the shape-constrained graph cut method, (e) is one example of the 
morphological operation results, and (f) is one example of the ground truths.
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18 to 21 are distance from the centroid to retinal surface ILM, roof of photoreceptor ellipsoid zone, RPE floor and 
BM. Feature 22 to 28 are the coordinates and intensity of the centroid, and the coordinates of the min rectangle 
wrapping the segmented region. Feature 29 to 52 are the coordinates and intensity of the extremum points in 
eight different directions. Feature 53 to 62 are regional mean of two eigenvalues of the Hessian matrix at scale 1, 
3, 6, 9 and 14. In this paper, feature extraction is implemented on 2D slices automatically, allowing the variability 
in shape, size, position and number of serous PED regions in different B-scans.

Classification. In this paper, only the serous PED region and background will be distinguished. Therefore it 
is a two-class classification problem.

An AdaBoost classifier is applied to distinguish serous PED object from background. All training samples will 
be set with an original weight respectively at the beginning. The original weight will be updated with the principle 
that the weight of wrong classified sample increases while the weight of correct classified sample decreases for the 
next training31. Finally, a high-performance strong classifier will be trained by combining the weighted value of a 
set of weak classifiers. The AdaBoost classification algorithm is described as Pseudo-code 1.

Figure 8 (c) shows one example of the classification results. Some false positive segmented regions are removed 
by the trained AdaBoost classifier comparing to the initial segmentation results in Fig. 8 (b). After removing the 
false positive segmented regions, the refined initial segmentation results will be used to obtain foreground and 
background seeds automatically, which help to segment serous PED by using the shape-constrained graph cut 
algorithm.

Pseudo-code 1. AdaBoost classification algorithm:
Input: The initial segmentation results and the extracted features.
Begin

(1) Assign an original weight for each training sample;
(2) Train a weak classifier and compute the error rate and weighted value of the weak classifier;
(3) Update the weight of training sample with the principle that the weight of wrong classified sample increases 

and the weight of correct classified sample decreases;
(4) Repeat 2) to get N weak classifiers;
(5) Combine the weighted value of N weak classifiers to constitute a strong classifier.

End
Output: The refined initial segmentation results.

Shape-constrained graph cut. The graph cut method has been used widely for the region object segmen-
tation32–36, which is formulated as an energy minimization problem by using min-cut/max-flow algorithm37–39. 
For the graph cut method, an important step is to obtain foreground and background seeds. Traditionally, the 
seeds are labeled manually. In this paper, the seeds are obtained automatically by the mathematical morphology 
operations based on the refined initial segmentation results. The erosion operation is applied to obtain fore-
ground seeds, and the dilation operation is applied to obtain background seeds. More details about the mathemat-
ical morphology method will be introduced in section Mathematical morphology. In this paper, the cost function 
for the shape- constrained graph cut has three parts, including the region term, the boundary term and the shape 
term, defined as follows:

( ) ( ) ( ) ( )= + + ( )E E E Etotal region boundary shape 6

where ( )E total  is the total cost, ( )E region  is the cost associated with the voxel intensity value, ( )E boundary  is 
the cost associated with the intensity gradient, and ( )E shape  is the cost associated with the shape of serous PED. 
Comparing to the typical graph cut cost function, the shape term is added in this paper.
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where P and N P are the set of pixels, p and q are pixel in P and N P respectively, and p is the neighborhood of q. fp 
and fq are label assigned top and q respectively. Rp(fp), the region term, is a cost based on the voxel intensity value. 
Bq,p(fp, fq), the boundary term, is the cost based on the gradient of the image intensity. Sp(fp), the shape term, is the 
cost based on the shape of serous PED. ( , )d p nRegio PED  is a distance from pixel pto the PED region. The linear 
time method in ref. 40 is applied to compute ( , )d p nRegio PED , and defining that if p belongs to RegionPED , then 
( , ) =d p nRegio 0PED . RadiusPED is the radius of a circle that just encloses RegionPED. The α, β and γ  are three 

weights for Rp(fp), Sp(fp) and Bq,p(fp, fq) respectively, satisfying α β γ =+ + 1. Only α and β are estimated using 
the gradient descent method in ref. 41 and set γ = −α−β1 . In this paper, the shape-constrained graph cut 
method is implemented after non-linear brightness curve transform based on the retinal layers segmentation 
results in SD-OCT images42. Figure 8 (d) shows one example of the segmented serous PED regions obtained by 
the shape-constrained graph cut method and the red regions are the segmented regions.
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Mathematical morphology. The mathematical morphology is applied for obtaining foreground seeds, 
background seeds and refining the automatic segmentation results in this paper. The critical step of mathematical 
morphology is to choose appropriate structure element (SE), which decides the performance of morphological 
operations. The shape and size are two important properties of SE. The shape of SE can be defined as rectangle, 
disk, diamond or ball etc, and its size also has multiple choices. Single SE is not enough for abnormal retinal 
images processing with serous PEDs, which have various shapes, sizes and positions. In this paper, a multiple SE 
morphology method is applied to refine the serous PED automatic segmentation result, which allows the varia-
bility in shape, size and position of serous PED. The basic principle of multiple SE is to construct different SE with 
different size while preserving the same shape based on the segmented PED regions. The shape and size of SE are 
designed based on the extracted shape features, such as, the major axis length, minor axis length and area etc. In 
this paper, the shape of SE is defined as ball and its radius is defined as follows:

=
π

⋅
( )

r c 3V
4 9

3

where V  is the volume of the segmented PED region, r is the radius of SE, and c is a coefficient. By adaptively 
choosing the radius of SE, the erosion operation is applied to obtain foreground seeds (c =  0.143), and the dilation 
operation is applied to obtain background seeds (c =  1.143) based on the refined initial segmentation results. The 
obtained foreground and background seeds are used in the shape-constrained graph cut method.

Because the abnormal retinal images tend to have blurred boundary and serious deformation in roof of pho-
toreceptor ellipsoid zone and RPE floor, the automatic segmentation results may have some spurs, grooves or 
isolated points. In this paper, the reconstruction operation and closing operation are implemented to refine the 
automatic segmentation results obtained from the shape-constrained graph cut method43. The SE is also set as ball 
with adaptive radiuses as in Equation (9) for reconstruction operation (c =  0.200) and closing operation 
(c =  0.700). Figure 8 (e) shows one example of the morphology operation results. Comparing to Fig. 8 (d), some 
spurs and isolated points are removed, and some grooves are filled up.

Evaluation of segmentation performance. In order to evaluate the segmentation performance, the 
automatic segmentation result is compared to ground truth, the initial segmentation result and the segmentation 
result in ref. 15. Paired t-test is applied to compute the p value and a p value less than 0.05 is considered statis-
tically significant. Four indices are chosen to assess the automatic segmentation performance, including TPVF, 
FPVF, DSC and PPV.
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