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Optical coherence tomography (OCT) has established itself as the dominant imaging modality
in the management of glaucoma and retinal diseases, providing high-resolution visualization of
ocular microstructures and objective quantification of tissue thickness and change. This
article reviews the history of OCT imaging with a specific focus on glaucoma. We examine the
clinical utility of OCT with respect to diagnosis and progression monitoring, with additional
emphasis on advances in OCT technology that continue to facilitate glaucoma research and
inform clinical management strategies.
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Glaucoma is a multifactorial, progressive, degenerative optic
neuropathy and is the second most common cause of

blindness worldwide.1 The disease is characterized by the death
of retinal ganglion cells (RGCs) and their axons and by
associated morphologic changes within the optic nerve and
retinal nerve fiber layer (RNFL).2–7 Progressive neuroretinal rim
thinning and excavation of the optic nerve head (ONH) are
consistent findings. Although most glaucoma types progress
slowly, the disease can lead to blindness without treatment.1,8

With treatment, glaucomatous progression can often be slowed
or stopped. Accurate and early detection of glaucoma,
therefore, is critical to successful management.

Various imaging modalities have increased and decreased in
popularity as adjunctive technologies for the diagnosis and
progression monitoring of glaucoma.9 Optical coherence
tomography (OCT) has become the technology of choice.
Optical coherence tomography was first demonstrated in
199110 as an application of low-coherence interferometry.11

Enabling noninvasive, high-resolution cross-sectional imaging of
the retina in vivo, OCT’s clinical utility for glaucoma was
quickly realized.12,13 Optical coherence tomography became
commercially available in 1996 after scanning patterns with
reproducible measurements were implemented by industry.14

Optical coherence tomography has since changed the paradigm
of assessment of the retina and revolutionized the management
and diagnosis of glaucoma, allowing for objective and
quantitative evaluation of neural structures affected by the
disease, such as the macula and its individual layers, RNFL, and
ONH.15–23

Optical coherence tomography technology has advanced
since it was first applied to the eye and continues to rapidly
evolve. Hardware advances in commercial systems improved
resolution and increased scanning speeds. Previously available
OCT instruments used a technique referred to as time-domain
OCT (TD-OCT), which encoded the location reflections in the
time information and related the location of the reflection to
the position of the moving reference mirror, could obtain
images of the fundus, discriminate glaucomatous eyes from
normal, and detect change over time. However, this technology
was limited by slow scan acquisition times and two-dimensional
imaging.24–33 The introduction of spectral-domain OCT (SD-
OCT), which instead acquired all information within a single
axial scan simultaneously through the tissue by evaluating the
frequency spectrum of the interference between the stationary
reference mirror and reflected light, increased reproducibility
and accuracy in quantifying glaucomatous damage by further
improving scan density and resolution and reducing imaging
artifacts and scan acquisition time.17,34–43 One of OCT’s main
strengths is its unparalleled high axial image resolutions.
Previous TD-OCT B-scans had an axial resolution of approxi-
mately 10 lm, whereas the introduction of typical commer-
cially available SD-OCT instruments improved resolution to
approximately 5 lm axially with broad bandwidths at near
infrared wavelengths. This greatly decreased the need for
interpolation compared with TD-OCT.

Although SD-OCT significantly increased signal-to-noise ratio
and decreased motion artifacts compared with TD-OCT, both
are prone to image artifacts. These artifacts include speckle
noise, segmentation and alignment errors, low signal quality,
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software problems, and media opacities, such as reduced
corneal clarity or cataracts. Fixational eye movements, such as
ocular tremor, ocular drift, and microsaccades,44 can further
reduce image quality. Microsaccades can instantaneously move
the fixated point an average amplitude of 30 arcminutes,45

causing severe motion artifacts and unreliable measurements.
Although SD-OCT devices still require a trained imaging
technician to minimize artifacts, it is less operator dependent
than TD-OCT devices.46

RNFL thickness was the OCT parameter most often used in
glaucoma assessment and provided objective, quantitative
measurements of RNFL thickness,10 but the addition of new
parameters on commercial devices, such as those from
superficial and deep structures of the ONH and macula,
improved clinical utility of OCT. Scanning patterns were also
developed that could deliver three-dimensional (3D) data.
Spectral-domain OCT has since established itself as the
dominant imaging modality in the management of glaucoma,
although newer technologies are on the horizon, as written
below. Today, SD-OCT instruments are available commercially
from multiple manufacturers.47 Resolution, scan acquisition
rates, and measurements across these devices are generally not
interchangeable, but their ability to detect glaucoma is very
similar.16,48,49

Swept-source OCT (SS-OCT), a newer generation of OCT,
has recently been commercially introduced.50 Swept-source
OCT uses a longer wavelength (generally 1050 nm) compared
with SD-OCT (840 nm).51 Swept-source OCT can evaluate
RNFL and macular thickness, but can also more clearly image
deeper ocular structures such as the choroid and lamina
cribrosa (LC) in patients.51–54 With SD-OCT, it is challenging to
image deep structures due to relatively poor wavelength
penetrance and decreasing sensitivity and resolution with
increasing depth.55 Repeatable and automated methods of
quantification and visualization of LC, however, have been
developed in SD-OCT augmented with techniques for correct-
ing for optical aberrations in the eye56 or with enhanced depth
imaging,57–60 which simply involves moving the SD-OCT
device closer to the eye, allowing use of the image on the
side of the zero delay opposite from the one utilized
conventionally, with consequent improved signal from deeper
structures rather than more anterior ones.61–63 Swept-source
OCT is able to scan at higher speeds and can acquire high-
quality wide-angle scans that contain a large area of the
posterior pole, including both the optic disc and macula.

The advent of SS-OCT systems also considerably improved
the visualization of the anterior chamber (AC) structures,
permitting objective quantitative analysis of the AC angle and
facilitating comprehensive 3D assessment of the angle.
Anterior segment OCT has improved with faster scanning
speeds and newer algorithms for measurement of AC
parameters and is generally more sensitive in detecting angle-
closure when compared to gonioscopy.64 Swept-source OCT
affords high repeatability in terms of anterior chamber angle
width measurements, such as angle opening distance, trabec-
ular iris space area, and trabecular iris angle65 and is able to
capture extremely high resolution images of the AC. A
consistent measurement of iris volume and the area of
peripheral anterior synechiae is now possible with SS-OCT,
whereas prior generations of OCT could not reliably assess
these AC parameters.66–69 Optical coherence tomography for
evaluation of the anterior segment continues to evolve and will
likely have an important role in the diagnosis and management
of glaucoma patients.70

The application of OCT has also recently been extended to
angiography and blood flow measurement. Techniques to
perform OCT angiography recently became commercially
available,71 and ongoing studies are exploring the link between

blood flow and glaucoma. Optical coherence tomography
angiography offers a repeatable,72 high-resolution, 3D quanti-
tative evaluation of retinal vascular abnormalities in vivo and is
a promising alternative to dye-based angiography, avoiding the
dye injection-related complications. Reduced retinal perfusion
in the ONH and peripapillary retina has been observed in
glaucomatous eyes.72–75 Whether decreased ocular blood flow
in the ONH is the cause or the result of glaucoma progression
remains unresolved.71

These methods are also not without limitations. The cross-
sectional angiograms of OCT angiography devices, for example,
often show projection artifacts76,77 due to fluctuating shadows
from the blood in the inner retinal vessels. Although these
artifacts may be accounted for and removed, shadows from the
choriocapillaris often obscure visualization of deeper choroidal
vessels. Furthermore, OCT angiography may be unable to
detect extremely slow blood flow, as is present in some
pathologic conditions. Doppler OCT, although able to detect to
motion parallel to the OCT beam, has a limited ability to
visualize motion predominantly perpendicular to the probe,
such as is the case in retinal and choroidal circulations.
Although hemodynamic parameters may be useful in diagno-
sis78 and management of glaucoma, its true clinical utility
remains to be determined.

DIAGNOSIS OF GLAUCOMA

Glaucomatous structural damage often precedes vision
loss.24,79–84 Although diagnosis of moderate to severe cases
of glaucoma is relatively straightforward, with diagnoses
confirmed based on the presence of typical visual field (VF)
defects on standard automated perimetry (SAP) and corre-
sponding signs of glaucomatous ONH damage, the disease
typically remains asymptomatic in the early stages. Standard
automated perimetry has been widely used for diagnosis,
staging, and monitoring of glaucoma, but is only likely to
detect functional deficits after at least 20%–40% of RGCs have
been lost.3,24,78–80 Furthermore, visual field testing is often
variable, and diagnosis may require repeated testing.85,86

Identification of early glaucomatous structural damage, such
as structural remodeling of the ONH and inner retinal layers, is
essential for early diagnosis, management, and prevention of
vision loss.87–89

Clinical assessment using multiple parameters, including
peripapillary RNFL, ONH, and macular parameters, has proven
useful, not only for management and diagnosing glaucoma at
various levels of severity, but for evaluating risk in glaucoma
suspects.90 Although the use of multiple parameters could
increase false-positive results, structural damage may be
present in one parameter and not the other, and thus it is
helpful to have information from the macula, ONH, and RNFL
in glaucoma diagnosis.78,84

Current SD-OCT RNFL thickness parameters alone, however,
have good diagnostic accuracy and help clinicians in determin-
ing severity stages and differentiating normal from glaucomatous
eyes in the early stages.40,48 Retinal nerve fiber layer parameters
most extensively researched include: global average circum-
papillary RNFL thickness (average of thickness measurements in
the circumpapillary circle centered on the ONH), thickness
deviation map, and thickness parameters measured by quad-
rants or clock-hour sectors. In general, average circumpapillary
RNFL thickness and inferior sector RNFL thicknesses are the
OCT parameters with the best diagnostic accuracy, with
superior quadrant thickness values following in terms of
sensitivity.15,20,21,23 This agrees with prior studies showing
superior and inferior areas of the optic nerve most commonly
affected glaucoma91–93 (Fig. 1). The diagnostic accuracy of SS-
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OCT circumpapillary RNFL parameters are similar to those of
SD-OCT.94 For detection of glaucomatous damage, the SD-OCT
RNFL parameters have sensitivities ranging from 60% to 98% and
specificities ranging from 80% to 95%.15,16,18,20,21,23 Diagnostic

performance decreases, however, for detection of early disease
to 48% to 77% at the same specificity range for patients with
minimal visual field losses.95,96 Recent evidence shows,
however, that even before the appearance of any VF defects

FIGURE 1. Retinal nerve fiber layer analysis from Spectralis-OCT (Heidelberg Engineering, Heidelberg, Germany) demonstrating glaucomatous
damage. The RNFL evaluation in the right eye (OD) shows abnormalities in the superior and inferior quadrants.
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on SAP, RNFL average thickness parameters could detect
glaucomatous damage: at 95% specificity, up to 35% of eyes
had abnormal thickness values 4 years prior to detectable VF
loss and 19% had abnormal values 8 years prior.84 The
reproducibility of current SD-OCT RNFL thickness parameters
is excellent, with global average RNFL thickness generally being
the most reproducible.97

Evaluation of the macular region is also important in
glaucoma diagnosis; and OCT has become an attractive means
for identifying glaucomatous macular damage. Glaucomatous
damage of the macula is difficult to detect and generally
overlooked or underestimated by clinicians when using the
most common automated perimetry testing: 24-2 (68 grid) VF
test.98–105 Central structural damage can be missed with OCT
reports based solely on circumpapillary RNFL.78,106 Macular
damage occurs early in the disease process and can take the
form of arcuate defects, diffuse, widespread damage, and/or
local damage, or some combination of these.99,106–108 In eyes
without other macular pathology, there is less variability and a
lower likelihood of the presence of anomalous structural
characteristics in the macula compared with the optic disc and
peripapillary region.47,109,110 Assessment of the macula may
also avoid some limitations of circumpapillary measurements,
such as interference from retinal and optic nerve head
vasculature, peripapillary atrophy, and variable placement of
the measurement circle around the disc.

Structures that thin and diminish in glaucoma comprise a
large proportion of total macular thickness; these include RNFL
and RGCs, but also inner plexiform layer.111,112 The RGC layer
is thickest in the perimacular region, and its thinning is likely
responsible for the decreased total macular thickness observed
in glaucomatous eyes. Preservation of central vision until late
in the disease may suggest macular assessment is not useful for
glaucoma detection. The macular RGC layer, however, is up to
seven cells thick and contains more than 50% of the eye’s
RGCs,113 and structural changes in the macula can thus easily
precede detectable VF losses.114 Additionally, changes in this
layer are more likely be the result of pathologic change rather
than normal variation,115 and thus measurements of this layer
could potentially be more sensitive than RNFL thickness
parameters. Segmentation of the ganglion cell layer alone,
however, remains very difficult due to low reflectivity.116

Advances in OCT have allowed for better quantitative
evaluation of macular RGC damage and have enabled more
detailed segmentation of the macular inner retinal layers and
the entire macular thickness.117–120 Although some studies
show that macular RNFL (mRNFL) thickness in SD-OCT is less
accurate than circumpapillary RNFL in glaucoma diagnosis or
detecting preperimetric glaucoma, novel segmentation algo-

rithms have increased the diagnostic utility of macular
evaluation.47,111,120–123 Parameters, such as mRNFL, ganglion
cell layer with inner plexiform layer (CGIPL), and the ganglion
cell complex (GCC), which includes mRNFL, ganglion cell
layer, and inner plexiform layer,117,118 can distinguish glau-
comatous eyes from those of healthy subjects and can
differentiate between early, moderate, and advanced glauco-
ma.110,121,124–129 The GCC and GCIPL parameters from both
SS-OCT and SD-OCT carry a diagnostic performance at least
equal to that of circumpapillary RNFL parameters130; all three
parameters, including mRNFL, now have comparable diagnos-
tic performance in detection of preperimetric glauco-
ma.110,124–126 Once VF losses are apparent, there is a
significant association of VF defect patterns with GCIPL defect
patterns.114 The most commonly observed GCIPL and inner
macular layer defect pattern in glaucoma subjects is thinning in
the inferior perifoveal region, seen clinically as superior VF
defects100,111,131,132 (Figs. 2, 3).

Macular parameters are of increasing importance in the
management of glaucoma, especially given improvements in
OCT technology. Recent software updates have reduced GCC
segmentation errors in patients with macular degeneration,
which should allow these patients to be evaluated for
glaucoma with more confidence.133,134 Posterior pole asym-
metry analysis (PPAA) combines mapping of the posterior pole
retinal thickness with asymmetry analysis between eyes and
between hemispheres of each eye.135 Posterior pole asymme-
try analysis, although not presently having a built-in normative
database, is highly reproducible and matches circumpapillary
RNFL measurements in terms of diagnostic accuracy of early
glaucoma.136–138 Spectral-domain OCT may also be superior to

FIGURE 2. Ganglion cell analysis from Cirrus-OCT (Carl-Zeiss Meditec, Dublin, CA, USA), which includes the combination of ganglion cell and inner
plexiform layers (GCIPL), shows thinning in the inferior and inferotemporal perifoveal regions of both eyes.

FIGURE 3. Perimetric pattern deviation maps from the same patient
shown in Figure 2. Defects correspond with the locations of thinning
observed in ganglion cell analysis.
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SS-OCT in detecting GCIPL thinning in the outer temporal
zone,119 where the glaucomatous damage commonly oc-
curs.100 However, SD-OCT and SS-OCT have similar glaucoma
diagnosis abilities based on macular inner layer thickness
analysis.119 Ultimately, clinical assessment of the macular
region is helpful in glaucoma diagnosis and evaluation and
clinicians should incorporate macular scans into clinical
protocols. Patients with abnormal or borderline macular
structural parameters likely require close follow-up and
initiation of treatment to avoid vision loss.139 Clinicians should
not rely entirely on macular parameters, however. In addition
to glaucoma, other macular diseases are also common in the
aging population. These conditions may affect OCT macular
thickness measurements and render them useless for the
evaluation of glaucoma, including diabetic retinopathy, macu-
lar edema, macular degeneration, and epiretinal membranes.

Advances in OCT technology have also allowed for higher-
resolution imaging of the ONH140 and quantification of ONH
parameters, but the clinical value of OCT ONH parameters
remains controversial. Compared with previous OCT technol-
ogy, SD-OCT relies less on data interpolation, and this has
resulted in far better delineation of ONH structures than could
be achieved with TD-OCT. Studies have found that ONH
parameters have an excellent ability to discriminate between
normal eyes and eyes with even mild glaucoma. Parameters
such as rim area, vertical rim thickness, and vertical cup to disc
ratio were found to have the greatest diagnostic ability and
were as good as RNFL thickness parameters in diagnosing
glaucoma.40 In some cases, ONH parameters were found to be
better at initial glaucoma detection and discriminating glauco-
ma and glaucoma suspect subjects from normal subjects.141,142

However, a number of studies show ONH parameters are
inferior to standard circumpapillary measurements for glauco-
ma detection.122,143,144 One study, although limited by using
VFs as a reference standard, found that RNFL and macular
parameters were significantly better for glaucoma diagnosis
than ONH parameters, especially for early-stage glaucoma.21,143

Differences in these results are at least partially a consequence
of the reference standard used to select cases and controls
given that a reference standard must be employed to select
cases and controls for any diagnostic accuracy study.145 There
is a greater chance, for example, that patients with clearly
abnormal optic disc features will be classified as cases if the
reference criteria include optic disc appearance. Retinal nerve
fiber layer abnormalities are not as easily detectable by
clinicians.146,147 Similarly, those with normal appearing optic
discs will be declared controls. This type of reference standard
introduces a bias towards favoring accuracy of topographic
ONH parameters.145 Furthermore, differences in commercially
available OCT devices could at least partially explain the
differences between studies, such as differences in the
acquisition speed, scanning rate, spatial resolution,142 layer
detection algorithms, and analytical software. Each of the
different devices, therefore, may report different RNFL
thickness values and ONH measurements. Additional reasons
could also contribute to variable results, including differences
in the number of subjects, differences in ethnicity, or
differences in the representation of the different stages of
glaucoma.40,143 Consideration of a combination of circum-
papillary and ONH parameters is likely the best approach for
glaucoma detection.29,78,141

Given recent advances in SD-OCT technology, evaluating
the ONH with OCT is useful in the diagnosis and management
of glaucoma. Segmentation of the ONH was greatly improved
with new software, as was implementation of referencing the
fovea’s position and Bruch’s membrane as anatomic landmarks,
which allowed for better measurement of the ONH rim and
RNFL thickness.148–150 Bruch’s membrane opening minimal

rim width (BMO-MRW), a relatively new anatomical parameter
describing the neuroretinal rim, consists of the minimum
distance between the BMO and the internal limiting mem-
brane. Bruch’s membrane opening minimal rim width has a
high association with glaucomatous functional changes on SAP
and, compared with previous BMO methods, has a better
ability to detect early glaucoma.142,148,151 It has an advantage
over other SD-OCT methods of neuroretinal thickness mea-
surement by considering the variable orientation of rim tissue
in the ONH. Rim area, however, appears to be a more useful
ONH parameter for detecting early glaucoma.142 Ultimately,
assessment of circumpapillary RNFL, macular, and ONH
parameters is useful for quantifying risk, diagnosis, and
management of glaucoma at different levels of severity.

DETECTING PROGRESSION

Detection of disease progression remains challenging in
glaucoma due to the variable and slowly progressive nature
of the disease, measurement variability of SAP and of imaging
devices, and the lack of a commonly acceptable reference
standard.47 Some eyes show structural changes in the ONH or
RNFL before any indication of glaucomatous damage can be
detected with SAP.82 Because SD-OCT is relatively new
technology, only a few reports exist using SD-OCT RNFL
parameters for detecting glaucoma progression.75,152–155 Most
progression studies use TD-OCT due to the longer follow-up
period.24,32,33,156

Assessment of multiple OCT parameters from the macula,
ONH, and RNFL is important, not only in diagnosis, but to
detect disease progression and longitudinal change.78 Retinal
nerve fiber layer evaluation is less sensitive than VF when
tracking progression in advanced cases due to a floor effect
that occurs when the residual RGC layer has nearly dimin-
ished.156–158 Location of RNFL losses should also be considered
when predicting VF progression.32,156,159 Although average
RNFL thickness may be the main parameter to consider when
evaluating for structural progression in advanced glaucoma
patients, RNFL thicknesses in the inferior quadrant and
inferotemporal sector may be the most predictive of progres-
sion33,156 (Fig. 4). Retinal nerve fiber layer thinning in the
superior quadrant has also been associated with subsequent VF
losses in TD-OCT.160 Spectral-domain OCT instruments cannot
be used interchangeably, however, especially for glaucoma
progression assessment, due to variability in circumpapillary
RNFL thickness calculations.49 Interestingly, other studies
found that average macular thickness is more sensitive than
circumpapillary RNFL for detection of disease progression.161

Additionally, analysis of the total retinal thickness (GCIPL,
along with outer plexiform layer to RPE) may be more sensitive
in detecting progression than circumpapillary RNFL.162

Approaches that combine structure and function improve
diagnosis both in cross-sectional and longitudinal investiga-
tions163,164 and algorithms that combine structural and
functional measurements will likely improve the detection of
glaucoma progression.139,163–166 Prior studies suggest that
using a combination of perimetry and circumpapillary RNFL
values is the best approach when monitoring for progression,
especially given that SD-OCT RNFL values have a strong
relationship to functional deficits.167–172 In TD-OCT, structural
progression was associated with functional progression in
preperimetric, glaucoma suspect, and glaucomatous eyes160

and eyes with significant SAP progression have higher rates of
RNFL thickness loss compared with nonprogressing eyes.173

Clinically, it can be difficult to determine whether RNFL losses
that precede SAP changes reflect true progression. Important
from a clinical perspective, the 24-2 VF test, although the gold
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standard in SAP for glaucoma evaluation, is not an ideal strategy
for detecting glaucomatous damage of the macula; the 10-2 VF
will often detect damage missed with the 24-2 pattern.98,101

As OCT evolves, it will continue to provide more accurate
detection of progression and enhance our understanding of the
structural pathogenesis of glaucoma, including the role of the

LC in glaucoma progression. As the presumed site of axonal
injury in glaucoma,174 the LC may play a role in neuronal death
seen in glaucoma. Lamina cribrosa microstructure likely
provides the mechanical support to optic nerve fibers within
the deep optic disc region.175 Quantitative measurements of
LC microarchitecture, such as pore diameter, pore area, and LC

FIGURE 4. Guided progression analysis from Cirrus-OCT (Carl-Zeiss Meditec) demonstrating early glaucomatous progression. Compared with
baseline examinations from December 2007, the patient has statistically significant focal RNFL loss in the inferior quadrant in the left eye. More
commonly, the corresponding RNFL thickness map to ‘‘Exam 6’’ may show a red wedge-shaped defect in the inferior quadrant of the ONH.
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beam thickness, were found to have good reproducibility56 in a
multimodal SD-OCT with adaptive optics technology and offer
the potential to serve as biomarkers for glaucoma progression.
Using a prototype SS-OCT with 100,000 A-scan/s scanning
speed and 5-lm axial resolution, Wang et al. demonstrated
good reproducibility of LC parameters, including pore diame-
ter SD, pore aspect ratio; beam thickness, pore area, beam
thickness SD, and beam thickness to pore diameter ratio.176

Lamina cribrosa microarchitecture changes have been ob-
served with SS-OCT in glaucomatous eyes,177 and LC pore
shape and size also have been correlated with the severity and
progression of glaucoma.178,179 Additionally, the LC was found
to be displaced both anteriorly and posteriorly in glaucomatous
eyes compared with age-matched healthy eyes,180–182 and
thinner LC was associated with glaucoma progression.183

Overall, the structural thinning and displacement of the LC
likely cause LC pores to deform,184 impeding axoplasmic flow
within the optic nerve fibers and disrupting transport of
factors crucial for the survival of RGCs.185,186 This could lead
to RGC apoptosis, contributing to glaucoma development and
progression. In addition, there may be biological changes that
occur due to deformations of the lamina in the axons or
microglia that result in axonal stress or RGC impairment or
death. Although the LC’s role in glaucoma progression is yet to
be fully determined, SS-OCT and SD-OCT have undoubtedly
improved current understanding of the LC and its micro-
architecture.176

CONCLUSIONS

Optical coherence tomography has changed the face of
glaucoma assessment and research. Optical coherence tomog-
raphy has impacted the ways that patients are diagnosed and
followed clinically and remains a dynamic and evolving
imaging modality. Optical coherence tomography technology
and software algorithms are improving and newer technologies
are continually under development,187–189 increasing OCT’s
clinical utility. Clinicians should be aware of OCT’s limitations
and should be aware of possible scan artifacts. Clinical
decisions should never be driven by OCT results alone, but
should also be based on a complete ophthalmic examination
and VF assessment.
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