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On k-Nearest Neighbor Voronoi Diagrams in the
Plane

DER-TSAI LEE, MEMBER, IEEE

Abstract-The notion of Voronoi diagram for a set ofN points in
the Euclidean plane is generalized to the Voronoi diagram of order k
and an iterative algorithm to construct the generalized diagram in
O(k2N log N) time using O(k2(N - k)) space is presented. It is shown
that the k-nearest neighbor problem and other seemingly unrelated
problems can be solved efficiently with the diagram.

Index Terms-Analysis of algorithm, computational complexity,
divide and conquer technique, k-nearest neighbors, point location,
Voronoi diagram.

I. INTRODUCTION

T HE nearest neighbor problem arises in several applica-
tions such as density estimation, pattern classification,

and information retrieval. The problem is to find, among a set
of points (or feature vectors), the one which is most similar or
closest to a given test point according to some dissimilarity or
distance measure. One straightforward way of solving it is to
compute the "distances" between each point of the set and the
test point and then search for the point P with minimum dis-
tance. The amount of work involved in this method is obviously
proportional to N, the size of the set. If only a few queries will
be posed on a given set of data, the method is probably the best
one. But on the other hand, if an extremely large number of
queries is to be made, then it would be cost effective to perform
some moderately elaborate preprocessing on the data. In the
latter case, a solution to the given problem is usually evaluated
by the following three measures: 1) the search time, that is,
the number of operations required to find the desired point or
points, 2) the preprocessing time, that is, the number of op-
erations required to construct the data structure postulated
by the search algorithm, and 3) the amount of storage required
by the preprocessed data structure.
The k-nearest neighbor problem to be considered here is a

variant of the classical nearest neighbor problem. It has been
shown that the k-nearest neighbor approach is an important
technique for multivariate density estimation [18] and clas-
sification [5]. In an information retrieval system, the request
of searching in a file with N records for the k nearest records
to a query becomes more desirable. Due to the time-consuming
process of finding the k-nearest neighbors, a number of data
structures and search algorithms have been developed [1], [2],
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[4], [7]-[10] to facilitate a rapid solution. However, the al-
gorithms which appeared in the literature have worst case
performance in terms of running time 0(N). Therefore, we are
interested in the possibility of discovering a technique whose
worst case performance is provably faster. From here on, we
shall consider only the k-nearest neighbor problem in the
Euclidean plane.
To solve the k-nearest neighbor problem, Shamos and Hoey

[22] propose an approach using Voronoi diagrams. They in-
troduce the idea of generalized Voronoi diagram in the Eu-
clidean plane, called Voronoi diagram of order k, and claim
without proof that the number of regions in a Voronoi diagram
of order k never exceeds 0(k(N - k)). In the following sections
we shall prove the bound and give an algorithm to construct
the diagram in 0(k2N log N) time using 0(k2(N - k)) storage.
In the next section we shall define the notion of Voronoi di-
agrams. In Section III we prove some properties of the gen-
eralized Voronoi diagram. In Section IV, we present a basic
procedure to construct the generalized Voronoi diagram. In
Section V the search algorithms are summarized. Finally,
applications and possible further studies of this topic are dis-
cussed.

II. THE VORONoI DIAGRAM AND ITS
GENERALIZATION

Given a set S = fqI, q2, , qNI ofN sample points in the
plane R2 in which each point qi is represented as an ordered
pair (xi, yi), i = 1, 2,.. , N, the distance dp(qi, qj) between
two points qi and qj under the Lp-metric is defined as dp(qi,
qj) = (I|xi-xj I P + jyj-yj I P)l/P and d. (qi, qj) = max (I xi
- ,jy -yi). We shall consider only the Euclidean metric,
i.e., L2-metric. The locus of points closer to qi than to qj, de-
noted by h(qi, qj), is one of the half-planes determined by the
bisector B(qi, qj) = JrId(qi, r)1I< d(qj, r) . The locus of points
closer to q1 than to any other point in S, denoted by C(i), is
thus given by C(i) = n h(qi, qj), the intersection of all the

i#j
half-planes associated with qi. Vertices of the Voronoi polygon
are called Voronoi points and the edges on the boundary are
called Voronoi edges. The set of Voronoi polygons partitions
the plane into N regions, some of which may be unbounded,
and is referred to as the Voronoi diagram V(S) for the set S

The subscript p = 2 for the metric will be omitted.
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LEE: k-NN VORONOI DIAGRAMS

Fig. 1. The nearest neighbor Voronoi diagram for a set of 16 points.

ofN points [20], [21 ]. Fig. 1 is the Voronoi diagram for a set
of 16 points. It has been shown that the Voronoi diagram for
a set ofN points in the plane under the Lp-metric can be con-
structed in O(N log N) time [ 14].

In an ordinary Voronoi diagram each polygon is associated
with a point, i.e., CV(i) is associated with qi. We now extend
the notion by considering the Voronoi polygon CV(H) associ-
ated with a subset H of points. That is, cV(H) is the locus of
points closer to all points in H than to any other point not in
H. Or equivalently, Y(H) = n h(qi, q ),where S

qiE H,q1e S-H

denotes the entire set of points. For simplicity we use n h (H,
S - H) to denote n h(qi, qj). Since H can be any

qieH,qjeS-H
of the 2N possible subsets of S, 'V(H) may, of course, not exist.
We shall restrict ourselves to the case that the subset H under
consideration has cardinality k. We define the Voronoi di-
agram of order k, denoted Vk(S), as the collection of Voronoi
polygons of all the k-subsets of S, namely, Vk(S) = u

{'V(H):H C S, IHI = k} [13], [22]. Since some of the polygons
cV(H) may be empty, the total number of polygons in Vk (S)
depends on the positions of the given N points. As we shall
show below, the number is 0(k(N - k)). Before we proceed,
we shall make the following observations which are the basis
for the iterative construction of Vk(S) from VI (S). We assume
that no more than 3 points of the given set S are cocircular.

Suppose that VI (S) has been determined [14], [22]. After
locating the test point in the diagram, we can determine its
nearest neighbor. The second nearest neighbor can only be one
of the points whose associated Voronoi polygons are adjacent
to the one in which the test point lies. Thus, ifwe can somehow
"partition" the Yoronoi polygon where the test point lies into
a number of subregions each of which is adjacent to one of its

surrounding Voronoi polygons, the location of the test point
in the subregions will identify its second nearest neighbor. If
we carry out the "partitioning" on each Voronoi polygon in
VI (S), we shall end up with V2(S). Similarly, by partitioning
V2(S) we shall obtain V3(S), and so on. Thus, with (k - 1)
iterations of this procedure we can obtain from V1 (S) the order
k Voronoi diagram Vk (S). The k-nearest neighbors of a given
point can be determined by simply locating the test point in
Vk (S). Note that the final Vk (S) is useful only for fixed k,
assumed to be known a priori. We shall discuss the case where
k can vary over a certain range later.

Let us now illustrate the idea by an example. Fig. 2 shows
an order 1 Voronoi diagram on eight points. Suppose that the
test point q lies in V(5). Its nearest neighbor is q5. To find its
second nearest neighbor, we may artificially "delete" q5 and
solve the nearest neighbor problem as if there were seven
points. The Voronoi diagram on the remaining seven points
will then divide the polygon 'V(5) into six subregions as shown
by thick lines in Fig. 2 and the point associated with the sub-
region in which q lies is the second nearest neighbor. Fig. 3
shows the final configuration of V2(S) when the transforma-
tion is performed on all eight polygons. Fig. 4 shows V3(S) on
the same set of points.

If we superimpose V2(S) and then V3(S) on the original
VI (S) diagram, shown, respectively, in Figs. 5 and 6, we see
that there are essentially two types of polygons in the gener-
alized Voronoi diagram (to be shown later). Regions of the first
kind,.referred to as type I regions, contain a single edge of the
Voronoi diagram of one lower order. Regions of the second
kind, referred to as type II regions, contain a Voronoi point
which existed in the previous two lower order Voronoi di-
agrams. To be specific, given an order 1 Voronoi diagram
GI = (Ii, El), where II is the set of Voronoi points and El the
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Fig. 2. The order 1 Voronoi diagram for a set of 8 points with a test point
in tV(5).
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Fig. 4. The order 3 Voronoi diagram for the set of 8 points in Fig. 2.
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Fig. 3. The order 2 Voronoi diagram for the set of 8 points in Fig. 2.

set of edges, the order 2 Voronoi diagram turns out to be G2
= (12, E2), where 12 = II u 12 is the union of the "old" set I,
and a "new" set I2 and E2 is obtained from El of GI by the
transformation described earlier. The edge in E2 which con-
nects two new points in I2 is called a new edge. Thus, the set
E2 consists of new edges and those incident upon "old" points
in II. In Fig. 5 new points are denoted by "A." The pair of
indices (i, j) associated with each edge means that the edge is
a portion of the bisector of qi and qj. Where space permits,

---- Order 1 Voronoi diagram
-Order 2 Voronoaldiagram
All regions in V2 are type I regions

Fig. 5. The order 2 and order 1 Voronoi diagrams superimposed.

every region is represented by 1V(i,j) indicating the 2 associ-
ated points qi and qj. To be consistent, the region should be
denoted by c(Vi, j)). With no confusion, we shall omit the set
symbol I I in the following discussion. As in a set, the order
of the indices is irrelevant. There are only regions of one type,
namely type I regions in V2 shown in Fig. 5, since every edge
in V1 is new. On the other hand, there are two.types of regions
in V3 (Fig. 6), each of which is associated with 3 indices. For
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instance, 'V(1, 3, 5) is type I and contains a new edge and 'V(3,
4, 5) is type II and contains a Voronoi point that existed in VI
and V2.

III. PROPERTIES OF THE ORDER k VORONOI
DIAGRAMS

We now formalize our discussions given earlier and prove
some properties of the order k Voronoi diagrams. Let us first
introduce some notation.
The binary associative operation @3 on the set I = {1, 2,**,

n} of indices is defined as follows. Let A and B be two subsets
of I. A D B is defined as (A - B) u (B - A), where "-" is the
set subtraction. (A @ B is commonly referred to as symmetric
difference of two sets A and B.) For convenience we shall de-
note point qi simply by i. Thus, the Voronoi polygon V(qi,, qi2,
. * *, qik) will be denoted by V(j1, i2,..*, ik). Since the edges
of the diagram are portions of bisectors of two points, we shall
denote by B(i, j) the portion of bisector B(i, j) that is an edge.
The pair of indices (i, j) is said to be associated with the edge
B(i, j). Let CVk(H, I) denote the polygon Yk(H) of the
Voronoi diagram Vk (I). In what follows, we shall use the set
I = $1, 2, , n} interchangeably with the set S = $q1, q2*
qn} of points.
Lemma 1: Given a set of points and a subsetH = $j1, i2,

iklofI,k >1,ifHs = H-tUS),wherej, eH,fors = 1,2,*,
m, m < k, are the only subsets ofH such that cVk- I (Hs, I)
exist, then CVk (H, I) can be expressed as u m=I(Vk-I(Hs, I)
nIVI(is,I-Hs))

Proof: Consider the order k - 1 diagram Vk- 1(I) and the
intersection of 'Vk (H, i) and Vk I(I). Note that 'Vk (H, I) n
'Vk-1(H, I) = 0 if H' 5# Hs, for some s = 1,2,**, m,for
otherwise we can find a point q in the intersection such that
the set of q's (k - 1) nearest neighbors is not a proper subset
of q's k-nearest neighbors which is impossible. Therefore, we
have

TVk (H, I) = cVk (H, I) n (U m=I cVk-1 (Hs, I))
= UI ('Vk(H,I) n ck-1(Hs,I))

Recall that cVk(H, I) = nh(H, I - H). We have

cVk(H, I) n cVk- (Hs, I) = (r3h
= (nh
= (nh
= 1tI

Since nh(Hs, I - Hs) = rh(Hs I - H) n (nh(Hs, js))
nh(Hs, I - H), nh(Hs, I - H) n (nh(Hs, I - Hs)) =
nh(Hs, I - Hs) = cVk-i(Hs, I). Therefore, TVk(H, I) =
US=I('Vk-l(Hs, I) r l(j, I - HsA)) 0
Lemma 2: Given an order k Voronoi diagram Vk (I) if q is

a point of an edge B(i, j) of Vk(I), then the kth nearest
neighbor of q is either i or j.2

Proof: It is obvious when k = 1. As an induction step
consider any polygon SVk- l(H, I) and the diagram VI(I - H),
i.e., the nearest neighbor diagram with the setH of points re-
moved. Let q be a point in the intersection 'Vk- l (H, I) n VI -

2 In fact, both i and j are q's kth nearest neighbor. But either i or j is ac-

ceptable as q's kth nearest neighbor in our discus&ion.

------ Order 1 Voronoi diagram
Order 2 Voronoi diagram
Order 3 Voronoi diagram

Shaded regions in V3 are type I, others are type II

Fig. 6. The order 3, 2, and 1 Voronoi diagrams superimposed.

(I - H) such that q lies on an edge B(i,j) of VI (I - H). That
is, q e C'VI(i, I - H) and q e cVI(j, I - H). By Lemma 1, q
e Vk(H u {i}, I) and q e 'Vk(H u [j, I), which implies that
q is on B(i,j) of Vk(1). Since q E Sk-I1(H, I), H is the set of
q's (k - 1) nearest neighbors. Furthermore, q's nearest
neighbor in the set I - H of points is either i orj, it follows that
q's kth nearest neighbor is either i or j. o
Lemma 3: Given an order k Voronoi diagram Vk (I), q is a

point of an edge B(I, j) of Vk (I) if and only if the circle cen-
tered at q with radius d(q, i) = d(q,j) contains k - 1 points
in its interior.

Proof: If q is a. point of B(i, j) of Vk(I), then the claim
is true by Lemma 2. To prove the converse consider the

(H,I--H)) n (rBh(Hs, I-Hs))
!(js, I-H) n (nh(Hs, I-H))) n (nh(Hs, I- Hs))
i(js, I-H)) n (nh(Hs, I-H) n ( h(Hs, I- Hs)))
js, I-Hs) n (r)h(Hs, I-H) n (r)h(Hs, I- Hs))).

neighborhood N(q, 3) of q, i.e., a circle centered at q with ra-
dius 3. Since q e B(i, j) and there exists a circle K centered
at q with radius d(q, i) = d(q, j) which contains k -1 points,
by continuity of the distance metric we can find in N(q, 3) a
point q' and a circle K' centered at q' with radius d(q', i) =
d(q', j) such that K' also contains the same k - 1 points. Let
H denote the set of k - 1 points contained in K (and in K').
Since q' E B(i, j) is any point in N(q, 3), there exists a portion
of B(i, j) which lies in N(q, b) such that for any point u on the
portion of B(i, j) the set of u's k-nearest neighbors is H u {il
or H u Uf. This implies that the portion of B-(i, j) must be
shared by iVk(H u $i4) and cVk (H u UA) in Vk(I). Thus, q is
a point of B(i, j) of Vk(I). °
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Lemma 4: Given a set I of n points, the edges of the order
n - 1 Voronoi diagram Vn- I (I) form a tree, i.e., for any two
points on the edges there exists a unique path between
them.

Proof: It follows from the fact that In-'I(I) is the farthest
point Voronoi diagram and that all polygons of the farthest
point Voronoi diagram are unbounded [11], [15], [21]. o
Lemma 5: The pair C of indices associated with an edge

which borders two polygons 'Vk (A) and SVk (B) satisfies C @
A @D B -. (This means that if one goes from one polygon to
another, only the kth nearest neighbor is changed.)

Proof: Assume that B(i, j) borders cVk(A) and cVk(B).
Consider a point q on B(i, j) and a neighborhood N(q, 3) of
q. Let ql E cVk(A) n N(q, 3) and qI is not on B(i, j). Since q's
kth nearest neighbor is either i or j, qI's kth nearest neighbor
must be i if 6 is sufficiently small. [By the fact that limb,
d(q1, i) = d(q, i).] Therefore, A must be A' u $i4 such that A'
is the set of qi 's (k -1 ) nearest neighbors. Similarly, we can
find a point q2 e Vk(B) n N(q, 3) and q2 is not on B(i,j) such
that B = B' u {ji and B' is the set of q2's (k - 1) nearest
neighbors. Since both qI and q2 become q as 3 approaches 0,
we can conclude that ql 's and q2's (k - 1) nearest neighbors
must be identical, i.e., A' = B'. Therefore, A @ B (@ C =
(A' u {il)D (A' uII)D$i,j} = 0. o3

With the above results we can formally classify the Voronoi
points and edges of an order i Voronoi diagram as follows. Let
B(a, b), B(b, c), and B(c, a) be edges of ViJ(S) incident upon
a Voronoi point q such that B(a, b) borders cYi(HI) and
YVi(H2), B(b, c) borders 'Yi(H2) and 'Vi(H3) and B(c, a)
borders cVi(H3) and cYi(H1). q is said to be an old Voronoi
point ifH1 = H' u lb, c},H2 = H' u {c, al and H3 = H' u la,
b}, where IH'I = i - 2 and H' does not contain a, b, or c;
otherwise (Hi = H" u {a}, H2 = H" u $b},and H3 = H" u
{c}, where IH"I = i -1 and H" does not contain a, b or c) q
is said to be a new Voronoi point. A Voronoi edge is a new edge
if it connects two new Voronoi points and is an old edge oth-
erwise. Thus, an old edge can connect two Voronoi points that
are old or one is new and the other is old. We now give some
properties of the order k Voronoi diagram in terms of old and
new Voronoi points and edges.
Lemma 6: Let B(a, b), B(b, c), and B(c, a) be edges of

Vk(S) incident upon a Voronoi point q. Let Kq denote the
circle centered at q and passing through points a, b, and c. (Kq
is the circumcircle of the triangle Aa, b, c.) If q is an old
Voronoi point of Vk (S), then Kq contains k -2 points ofS in
its interior. Otherwise, Kq contains k - 1 points of S in its
interior. (Note that this is only true under the assumption that
no more than three points are cocircular.)

Proof: Suppose that SVk (HI), SVk (H2), and cVk (H3) are
the polygons sharing point q and B(a, b) borders 'Vk (HI) and
Vk(H2), B(b, c) borders cvk(H2) and cVk(H3) and B(c, a)
borders cVk(H3) and cVk(H1). If q is old, then by Lemma 2,
Kq must contain the set H' of k - 2 points in its interior. If q
is new, then Kq contains the set H" of k - 1 points in its inte-
rior. O

Corollary 1: All Voronoi points of V1 (S) are new.
Proof: Immediate. 0

Lemma 7: Let 'Vk (H) be a bounded Voronoi polygon with

vertices uI, U2* , ui i > 3. If all the Voronoi points uI, U2,
u,i are new then k must be 1. If k > 1, then at least 2 of

these i Voronoi points must be old.
Proof: Suppose that 'Vk(HI), 'Vk(H2),*, Tk(HI) are

the polygons adjacent to SVk (H) such that uj is shared by
cVk(Hj), S'Vk(Hj+ 1), and SVk(H) for] = 1, 2,..-, i -1 and ui
is shared by cVk(Hi), cVk(HI), and 'Vk(H). 1) Suppose that
u1, u2, * *, ui are new and k # .SinceH and Hj can be ex-
pressedasH=Hou $al,Hj =Ho u $aj,j= 1,2,C -,i, IHoI
= k - 1 and B(a, aj),j = 1, 2,* * , i are edges of SVk(H), point
a must be in the interior of cYk (H). Consider a point q on an
edge of 'Vk (H). Let q' be the intersection of the line passing
through q and a and the boundary of SVk (H). Let x be any
point in Ho. Since point a, by Lemma 2, is the kth nearest
neighbors of q and q', d(q, x) < d(q, a) and d(q', x) < d(q',
a). Thus, d(q, x) + d(q', x) < d(q, a) + d(q', a) = d(q, q'),
contradicting the triangle inequality d(q, x) + d(q', x) > d(q,
q'). 2) Suppose that k > 1 and only one, say ui, is an old
Voronoi point. Since u1, U2, * * , ui I are new, we haveH =

Ho u la), Hj = Ho u $a1}, j = 1, 2, * * , i. But this implies that
ui, shared by H, Hi, and Hi must be new, a contradiction.o

This lemma implies that no new Voronoi points of an order
k > 1 Voronoi diagram ever form a Voronoi polygon. By
similar arguments, we have the following.

Corollary 2: No bounded order k Voronoi polygons have
vertices that are all old.
Lemma 8: Given a Voronoi diagram Vi(S), the new Voronoi

points of Vt(S) become old points of V,+ I (S) and every poly-
gon of Vi+ I (S) contains either a new edge of VI (S) (a type I
region) or old points and old edges of Vi(S) (a type II region)
in its interior.

Proof: Consider two adjacent polygons 'Vi(HI) and
cVi(H2) sharing an edge B(x, y) where x E HI and y e H2.
By Lemma 5, H1 $ H2 = {x, y}. The ith nearest neighbor of
any point q on B(x, y) is either x or y by Lemma 2. Since the
set of (i + 1) nearest neighbors of q on B(x, y) is HI u- Iy} =
H2 U {x} = H1 u H2, q must be in 'Yi+I(HI u $i}). That is,
each edge of ViJ(S) is contained in some polygon of Vi+I(S).
Now suppose that q is a Voronoi point of Vi(S) and the

edges incident upon q are B(a, b), B(b, c), and B(c, a), re-
spectively. Assume that the three polygons sharing q are
cVi(HI), 'Vi(H2), and ViY(H3) such that B(a, b) is shared by
'Vi(H1) and Ti(H2), B(b, c) shared by cVi(H2) and cVi(H3),
and B(c, a) shared by cYi(H3) and 'Vi(H1). If q is old, then
la, b} a H3, lb, c} c HI and {c, a} a H2. By previous argu-
ments, the edge B(b, c) is contained in c'Vi+1(H3 U Ic})
'Vi+l(H2 U $b}), B(c, a) is contained in CYi+I(H3 u
{c}) = YVi+ (HI u {a}), and B(a, b) is contained in 'Yi+I(HI
u {a}) = Yi+1(H2 U $b}). Since HI u {a} = H2 U lb1 = H3 U

{c}, these three edges including point q belong to cYi+ I (HI u
{a}) of Vi+I(S). If q is new, then a E HI, b E H2, and c e H3.
Now since B(a, b), B(b, c), and B(c, a) are contained, re-
spectively, in Vi+ I (HI u $b}), Yi+ 1(H2 U {c}), and Yi+ I (H3
u {a}), the point q will be shared by these three order (i + 1)
polygons and become an old point of Vi+I(S). Thus, if both
Voronoi points qi and q2 of an edge B(x, y) are new, i.e., B(x,
y) is a new edge of Vi(S), then B(x, y) will be contained in
some polygon cYi+ I (H) so that q1 and q2 are two old Voronoi
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points. This completes the proof. o
Lemma 9: Let Yj(H) be a Voronoi polygon of Vi(S) and

let 'V1(Ij 1), VI),.* * , C I (j,) be the Voronoi polygons of V1
(S - H) whose intersections with cVi(H) are nonempty. Then
the Voronoi points of VI (S - H) that are in V (H) are new
Voronoi points of Vi+ I(S) and the Voronoi edges of VI (S -
H) that are in 'Vt (H) are Voronoi edges of Vji+ I(S). Fur-
thermore, IV1(jt) - cVi(H) $ 0, t = 1, 2, , 1, i.e., no poly-
gons of VI (S - H) lie entirely in 'Vf (H).

Proof: By Lemma 1, we have CIl(t) n cV1(H) cVj+I(H
u Ut}) for t = 1, 2, 1. That is, for any point q E 1(Jt) n

cj(H), the set of q's (i + 1) nearest neighbors is H u Ut1.
Since each of the Voronoi points of V1(S - H) that are in
VY(H) is shared by three polygons of the form 'Vi+I(H u U, })
V,+ I(H u ltid), and Vi+ 1(H u {i"}), these Voronoi points,
according to our definition, are new. Since for any point q on
an edge B(j, jt) of VI (S - H) that is in YVi(H), the set of q's
(i + 1) nearest neighbors is H u Uj or H u Ut}, by Lemma
3, the portion of B(ji, jt) that is in cVi(H) is an edge of
V,+1(S). To show that no polygons of V1(S - H) lie com-
pletely in XVif(H), observe that the point jt 0 ViV(H) and jt E
'Yi(jV , for t = 1, 2,**, 1, for if jt E Vi(H), the set ofjt's i
nearest neighbors must includejt which is not in H, a contra-
diction. 13
Lemmas 8 and 9 show that new Voronoi points of Vi(S)

become 'old Voronoi points of VI+ I(S) and the Voronoi points
of VI (S - H) that are in Vi(H) are new Voronoi points of
V1+ I(S) and the Voronoi edges of V1(S -H) that are in
'j(H) are the edges of VT+ I(S), for all H c S whose associ-
ated polygon exists. Fig. 7 illustrates how type I and type II
regions are formed from Vi(S) to V1+I(S). We shall show
below that the Voronoi points and edges of V1+ I(S) are exactly
those derived from Vi(S) and V1(S - H) for all H c S such
that 'J(H) $ 0.

Let cXi+ 1(H, S) denote any polygon of Vi+ 1 (S). Consider
the Voronoi diagram Vi(H), which partitions the plane into
unbounded regions, each being the locus of points whose far-
thest neighbors in H are some extreme point of H. The edges
of Vi (H) will therefore partition cVi+ 1(H, S) into, say 1, sub-
regions, R1, R2, * - *, RI, each being the locus of points whose
(i + 1 )st nearest neighbors are some extreme point of H. The
following claims are made: 1) the intersection of the edges of
CVi+ I(H, S) and the edges of Vi(H) must occur at the vertices
of 'Vj+ I(H, S), which are old Voronoi points of V1+ I(S); 2)
the vertices of W +1(H, S) that are in some polygon CV1 (Ht,
H), t E 11, 2, * * , 1}, are new Voronoi points of V,+I(S); and
3) the intersection cVi(H., H) n Vi+/ I(H, S) are exactly the
intersection "Vi(Ht S) n cVI(jt, S - Ht), for t = 1, ,1,
where Ht = H - U,i.
To prove 1) assume that an edge B(jt, ju) of Vi(H) inter-

sects an edge B(x,y) of YVi+I(H, S), x e H,y 0 H, at a point
q. Obviously, d(q, jt) = d(q, iu) = d(q, y) and x e lt, i"}.
That is, q is the circumcenter of A ijjy and hence must be a
vertex of CVi+I(H, S) shared by edges B(x, y) and B(x', y),
where {x, x'} = [t,j,,i. Since the third edge incident with the
vertex q is of the form B(x, x') and the polygons 'V+ I(H,, S)
and cVi+i(H2, S) that share B(x, y) and B(x', y) with
'Yi+I(H, S), respectively, are such that H1 @ H2 = {x, x'} =

Before Af ter

(a)

Before =4> Af ter

(b)

Fig. 7. Formation of type I and type II regions before and after the trans-
formation from Vi(S) to Vi+1(S). (a) Formation of type I region. (b)
Formation of type II region.

{t , I cz H, the point q is an old Voronoi point of V1+I(S). To
prove 2) and 3), let Rt = YVi(Ht, H) n cVi++I(H, S), t = 1, 2,
* * 1. For any point q e Rt the set of q's i nearest neighbors
is Ht and the set of q's (i + 1 )st nearest neighbor is lt1. This
implies that Rt c 'Vi(Ht, S) and Rt C 'VI(jt, S -Ht).
Therefore, Rt a Vi(Ht, S) n cVI(jt, S - Ht). But from
Lemma 1, 'Vi(Ht, S) n 'V I(it, S - Ht) C IV,+ I(H, S) and
since ViY(Ht, S) 'Vi(Ht, H), we have Vi(Ht, S) n I (jt,
S - Ht) c YVi+I(H, S) n 'Vi(Ht, H) = Rt. Thus, ViY(Ht,HK)
n 'Vi+ (H, S) = 'Vi(HI, S) n II (it, S - Ht). The vertices
of cVi+ 1(H, S) that are in cVi(Ht, H) must be shared by edges
of the form B(jt, y) and B(jt, y') where y, y' E S - H, since
for any point on the edges its (i + 1 )st nearest neighbor is jt.
Since the third edge incident with any such vertex q is of the
form B(y, y') and the polygons cVi+I+(HI, S) and cVi+X+(H2,
S) that share B(t,y) and Bj(t, y') with V,i+ I (H, S), respec-
tively, are such that H1 CD H2 = $y, y'} Ct H, it follows that q
is a new Voronoi point of V1+ I(S). In fact, those edges of
'Vi+I(H, S) that are in 'Vi(Ht, H) are edges of VI(jt, S - Ht)
and hence are edges of V1(S - H); those edges of YVi(Ht, H)
that are in cVi+I(H, S) are edges of cVi(H, S).

Thus we have the following theorem.
Theorem 1: The Voronoi diagram V1+ I(S) can be obtained

from V,(S) and V1(S - H) by taking intersections of "Vi (H)
and V1(S - H) for all H c S such that YVi(H) is non-
empty.
Lemma 10: If cVj(H) contains m old Voronoi points of

Vi I(S) in its interior then it also contains 2m + 1 old edges
of V_..1(S).

Proof: Consider the intersection of 'XiT(H) and Vi1I(S).
By Lemma 1, tiY(H, S) = u'=I( V-1(Hs, S) n Cl1(js, S -

HsA where Hs = H- Us andjs E H for s = 1, 2, * * *, t. This
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means that Vj(H, S) is the union of t regions in which each
region is the intersection of the locus of points whose (i - 1)
nearest neighbors are the points in H, and the locus of points
whose ith nearest neighbor is ji. In other words, each region
is the locus of points whose i-nearest neighbors are in the set
H, u {jUI = H and ith nearest neighbor is jS. Consider now the
diagram Vj_1(H). Since Vi-j(H) partitions the polygon
ViY(H, S) into exactly the regions each of which Rj, is the locus
of points whose i-nearest neighbors are the points in H and the
ith nearest neighbor is js, each region Rj, is identical to
'Vi 1(Hs, S) n VI(is, S - H5). By Lemma 4 the edges that
partition cVi(H, S) form a tree. Therefore, if there are m points
then there are 2m + 1 edges. o
Lemma 11: Let Nk, Ek, Ik, and Sk denote, respectively, the

numbers of polygons, edges, Voronoi points, and unbounded
regions of an order k Voronoi diagram Vk(S). The following
relations hold:

Ek = 3(Nk - 1)- eVk and Ik = 2(Nk - 1) -k-

Proof: This becomes straightforward if one considers the
dual graph Dk (S) in which each node of Dk (S) corresponds
to a polygon of Vk (S), and two nodes of Dk (S) are connected
by an edge if the two corresponding polygons share an edge.
Note that the number of edges, faces (triangles due to the as-
sumption that each Voronoi point has degree 3), and nodes
which bound the outer infinite face of Dk (S) are equal, re-
spectively, to the numbers of Voronoi edges, Voronoi points,
and unbounded regions. o

Theorem 2: Given a set S ofN points, the total number
k

of regionsNk in Vk(S) iSNk = (2k - 1)N- (k2-1)-
i=lI

ei- 1, for N > k > 1, where i is the number of unbounded
regions in Vi(S) and So is defined to be 0.

Proof: Let Ei and Ii denote, respectively, the number of
edges and Voronoi points in Vi(S). Let I'+I denote the number
of new points in Vi+ 1, i.e., the number of points that do not exist
in Vi(S). I' is equal to II. Then from the above arguments we
have

hi+l = I,+, + I, (1)

since the number of Voronoi points in Vj+ I (S) is the sum of
the number of new points in V,+ I(S) and the number of old
points in V,+I(S) which were new in Vi(S). Rearranging (1),
we have

I+ I = Ii+ -1I. (2)

Now let E'+I and E'+I be the number of new edges connecting
new Voronoi points and the number of edges incident upon old
Voronoi points in /i+1 (S), respectively. We have E' = E1 and
E1 and

Ej+l = Ei+1 + E"+1.
Since each new edge corresponds to a type I region, the total

number N,+2 of type I regions in Vi+2(S) is E',1. Each type
II region in Vi+2(S) contains old Voronoi points in Vi+ I (S).
Suppose that the total number of type II regions in Vi+2(S)
is N,+2, and the jth type II region contains mj old Voronoi

points. We have 2 m1 = I. Also, the number of edges ej
j=1

incident on these mj points is, by Lemma 10, e= 2mj + 1 and

t2 e,= E'+1. Therefore, we have
j=1

E, 2 E: mj+NN+2=2I'+ N"
J=1

or

N.+2= E;'+ -2 ,.

Thus

Ni+2= Ni+2 + Ni+2
=E'i+ + E+I-2I1

=Ei+j - 2Ii. (3)

By Lemma 11 and (2) and (3) we have the following recur-
rence relation for Nk:

N1 =N,N2=E,j =3(N-1)-WV
Nk'r±2 = 3(Nk+I - 1)-= I

k
- 2 E (-1)k-i(2(Ni - 1) - i)

1=1

By induction on k we can prove that
k

Nk=(2k- 1)N-(k2-1)N- ej -. (4) 0
1=1

Corollary 3: The total number of regions in Vk(S) is O(k(N
-k)).

Proof: It follows directly from (4). 0
Lemma 12: The number of new Voronoi points in Vk(S)

is

Ik = 2k(N- 1)-k(k- 1)- eSi.

Proof: By Lemma 11 and (2) and (4) the lemma can be
verified easily.

Next we shall also derive two interesting results which have
been obtained by Shamos and Hoey [22].
Lemma 13: The total number of bounded and unbounded

N-I
regions in the Voronoi diagram of all orders is E Bk =

k=1

(N 1) and E ePk = N(N- 1), respectively.

Proof: Since NN = 1, i.e., the number of regions in VN(S)
N-1

is 1, which is the plane itself, by Theorem 2 we have E Sk
k=1

= N(N - 1). By Lemma 1 1, Ik = 2(Nk- 1) - eSk and the
N-I N

fact that E Ik = 2 , for each Voronoi point which is the
k=1 3

circumcenter of some 3 points of S appears twice in the
Voronoi diagram of all orders, we have

1 N-I I N-i
N- Bk= E (Nk -Vk) =- E (Ik -ek + 2)

k=1 k=l 2 k=l

-N(N-1) + (N- )(N 1)

Q.E.D.
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IV. THE ALGORITHM

In this section we shall give an algorithm to partition a single
Voronoi polygon, say LV(qm), of the order 1 Voronoi diagram
V1(S). Suppose that the polygons Y(qo) r *, CV(q,-1) are
adjacent to polygon 'V (qm). We want to partition CV(qm) into
n subregions such that each subregion ri is the locus of points
closer to qi than to any other points except qm for i = 0, 1, * * *,
n -1 (cf. Theorem 1). As pointed out in Section II, to partition
CY(qn) is essentially equivalent to artificially deleting qn and
forming the Voronoi diagram for the remaining points qo, ql,
* * , qn- 1. The effect of deleting qm is the elimination of the
boundary of the polygon and the extension of the edges inter-
secting at the vertices of CY(qn) to the interior of 'V(qm),
thereby partitioning the polygon 'V (qm). Let the vertices of
CV(qn) be denoted as IO, I1, - *, In- I and be kept as a linked
list. Each edge (Ii, I,+i)3of the polygon is a portion of the bi-
sector B(qi, qn) and is represented by the index pair (i, m).
By assumption each vertex Ii is an intersection of three edges
represented by (i, m), (i - 1, m), and (i, i- 1). Note that the
index pairs of the three edges satisfy the property (a, b) @ (b,
c) D (c, a) = 0. Let us denote the edge which is incident with
Ii and which is not on the boundary of the polygon cV(q.) by
IND(Ii). If the two boundary edges which are incident with
Ii are represented by (a, b) and (a, c), then IND (Ii) = (a, b)
$ (a, c) = (b, c). Fig. 8 shows a typical Voronoi polygon
LY(10) which is to be partitioned.
We shall tackle this problem by divide-and-conquer tech-

nique. We first obtain the Voronoi diagram for sets of 3 points
kq.-i, q0, q }, 1q2, q3, q4), etc., by extending the edges associ-
ated with IIND (IO), IND (II)), JIND (I3), IND (I4)}, etc.,
respectively, into the interior of 'V(qm). By "merging" two
adjacent Voronoi diagrams for sets of 3 points, we get Voronoi
diagrams for sets of 6 points. Repeating this merge process
[log2 n/31 times, we will obtain the Voronoi diagram for n
points. The edges of the diagram which are interior to 'V(qm)
will partition LV(qm) into n subregions. Fig. 9 shows the merge
process of two Voronoi diagrams for {q9, qo, ql} and Jq2, q3, q41,
and Fig. 10 shows the final merge process of two Voronoi di-
agrams for lqg, qo, q1, * * *, q4} and lq5, q6, *.. , q4}. In Fig. 10
the merge process starts with the extension of IND (I5), i.e.,
the bisector (4, 5) and ends at the point E as shown.
The technique used to merge two Voronoi diagrams is dis-

cussed in detail in [ 13], [14], and [22]. Here we shall omit the
description of the merge process and describe a method of
identifying the set of Voronoi points on which the divide-
and-conquer technique is to be applied.
Note that the result of Lemma 7 is crucial to the correctness

of the merging algorithm since it ensures that the "merge lines"
in the merging process always consist of no cycles.

Suppose that we have obtained an order i Voronoi diagram
Vi(S), k > i > 1. Recall that there are two types of Voronoi
points, old points which existed in Vi-.(S) and new points
which are just created. Based on previous discussions, only the
set of new Voronoi points are needed in order to construct the
Vi+I(S) diagram. Assume inductively that each Voronoi
polygon 'Vs(Hy) is associated with i points, i.e., 'V-(H1) is the
locus of points closer to these i points than to the remaining

3 Subscript additions and subtractions are taken modulo n.

/ * q5

Fig. 8. The order 1 Voronoi diagram for a set of 11 points.

/ * q5

Fig. 9. Illustration of the merging of two Voronoi diagrams for a set of 3
points.

points ofS and its vertices are represented as a double-linked
circular list. Since some of the vertices of Vi(Hj) are old
Voronoi points and some of them are new Voronoi points, only
those new Voronoi points are further linked together using an
additional pointer. Note that all the vertices in V1(S) are new
Voronoi points. Now to partition 'Vi(Hj) we first obtain the
set of new Voronoi points, each of which is associated with an
edge represented by IND (Ij) where Ij is a new Voronoi point
of LVi(Hj), and then apply the divide-and-conquer technique
just described. After each Voronoi polygon is partitioned we
need to chain together the vertices of each newly created
Voronoi polygon, associate it with a new set of i + 1 points, and
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TABLE I
Scheme Preprocessing Time Storage Search Time

l.Slab method [6,22] 0 ( N2 (N0) ° (k + log Nk)
2.Lee-Preparata [161 0 (Nk log Nk) 0 NN (k +(log Nk)2

3.Lipton-Tarjan [171 0 (Nk log Nk) 0 (k Nk) 0 (k + log Nk)

4.Preparata [19] 0 (Nk log Nk) 0 (kNkklogNk) 0 (k + log NOc)
5.Kirkpatrick [12] 0 (Nk log Nk) 0 (k Nk) 0 (k + log Nk)

According to Lipton and Tarjan, this method is far from being practical.

/ eq5

Fig. 10. Final merge process to form the Voronoi diagram for a set of 10

points.

at the same time when we form the vertex list of each polygon
we link the new vertices of the polygon to form a list. In this
manner we can obtain the order i + 1 diagram Vi+ I (S).
Now let us analyze the running time of the algorithm.

Suppose that the polygon 'Vi(H) to be partitioned has s new

Voronoi points II, 12, *--, Is The process of partitioning
Vs(H) is equivalent to finding the edges of an order 1 Voronoi
diagram for the set of s points whose indices are the union of
those that are associated with the edges IND (Ii), i = 1, 2, * - *,
s, and therefore takes 0(s log s) time. Since there are Ni
Voronoi polygons in Vi(S) and 0(iN) new Voronoi points
(Lemma 12), the total number of operations required is

Ni
E 0(sj log sj) = 0 (iN log N).
j=1

The amount of storage is O(N,+1) = 0((i + 1)(N - (i + 1))).
Since k - 1 iterations are required to obtain an order k
Voronoi diagram, the entire work is ;k-Ij 0(iN log N) = 0(k2
N log N). The amount of storage required is 0(k * Nk), which
is 0(k2(N - k)), since there are O(Nk) regions and each region
is associated with K points.

V. SEARCH ALGORITHMS FOR k-NEAREST
NEIGHBORS

After we have constructed the order k Voronoi diagram for
N sample points, to find the k-nearest neighbors of a given test
point X (or a set of test points) we simply perform a point-
location operation to locate the region which contains the test
point. There are a number of algorithms which have appeared
in the literature. We shall summarize here the results in Table
I without going into detailed description of the algorithms. The
interested readers can consult the original articles given in the
reference.

VI. CONCLUDING REMARKS

We have presented an 0(k2N log N) algorithm to construct
the order k Voronoi diagram for a set ofN points in the Eu-
clidean plane using 0(k2(N - k)) storage.
As noted in Section II, the final Voronoi diagram is useful

only when k is fixed. In the case that k can vary over a certain
range, we can either keep a copy of Voronoi diagram of order
k for each possible value of k, or construct the Voronoi di-
agram whose order is the largest k; and among the k-nearest
neighbors found we choose the k' nearest ones if we only are
interested in k' nearest neighbors. By using the former sim-
ple-minded method, we need E O(k2(N - k)) storage, where

k

summation is taken over k within the specified range, and
0(k a,5 N log N) preprocessing time. By the latter approach,
we can save storage but have to pay for the time spent in se-
lecting k-nearest neighbors among kmax nearest ones. But this
only takes 0(kmax) operations by using the linear selection
algorithm of Blum et al. [3]. In addition, there is a minor point
that is worth mentioning. Since finding the k-nearest neighbors
among N points is equivalent to find (N - k) farthest neigh-

bors, we can restrict k to be upper bounded by 2- The

constructions of the farthest neighbor Voronoi diagrams and
the generalized order K farthest neighbor diagrams are very
similar to the constructions of their counterparts described in
the paper. For construction of the farthest neighbor Voronoi
diagrams, see [11], [15], and [21]. Furthermore, if k could be
as large as O(N), we do not gain much by elaborating on such
an expensive restructuring on the set of points.
The order k Voronoi diagram can be useful if one is inter-

ested in finding for each of theN points its k-nearest neighbors.
A brute force method would take O(N2) time. However, if we
construct the order (k + 1) Voronoi diagram Vk+ I (S) and then
apply the point-location algorithms (methods 3-5) to locate
theseN data points in Vk+ l(S), we can solve the all-k-nearest
neighbor problem in time 0(kNk log Nk), which is 0(k2N log
N). Thus, this technique is useful only when k < 0((N/log
N)1/2). In addition, since each of those "new" Voronoi points
in the order k Voronoi diagram corresponds to a circumcenter
of some three points and the circumcircle thus determined
contains exactly k - 1 data points in its interior, the problem
of finding a smallest circle that contains k - 1. points in the
interior can be solved in 0(k(N - k)) time after the diagram
is obtained.
We have made the assumption that no more three points are
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cocircular. In case there are at most d(d > 3) points that are
cocircular, some results that we have obtained must be modi-
fied. For example, the claim that the circle centered at a
Voronoi point q of Vk(S) and passing through three points
contains either k - 1 or k - 2 points in its interior should be
modified so that it may contain k- 1, k-2, - *, or k-(d-
1) points in its interior. However, the central result (Theorem
1) that the Voronoi diagram Vi+ I(S) can be obtained from
Vi(S) and VI(S - H) for all liY(H) # 0 and H c S, still
holds, except that the notion of new and old Voronoi points
must be changed. Let cVi(H) be a.Voronoi polygon and B(x,
y) and B(x', z) be two edges of )Vi(H) that meet at a vertex
q, where x, x' e H. Then q is old (and will vanish in Vi+ 1(S))
ify = z and q is new (and will remain new.for d - 2 iterations
in Vi+I(S), * - *, Vi+d-2(S), where d is the number of points
that are on the circle centered at q) if y #d z. Note that this
classification becomes what we had earlier when d = 3. In case
q is new, a portion of the bisector B(y, z) will belong to Vi+ 1(S)
(as opposed to IND (q) when d = 3).
The construction of the Voronoi diagram of order k pre-

sented here is based on an iterative approach, i.e., transforming
an. order j Voronoi diagram to order j + 1 diagram with one
iteration. Does there exist a better way for constructing an
order k diagram? As one may have noticed, in the course of
building up an order j + 1 diagram from an orderj diagram,
many Voronoi points are created and then destroyed in the
following iteration. Therefore, it is reasonable to ask whether
there is any short cut that leads to the order k diagram without
going through every stage
One other possible approach is to apply the divide-and-

conquer technique directly to the set of points to get the order
k Voronoi diagram in a way similar to the one used in con-
structing the nearest neighbor Voronoi diagram. The differ-
ence between these two is that in ihe latter case there is only
one polygonal line, but in the former case there will be a set of
polygonal lines. The problem thus resides in how to obtain such
a set of polygonal lines.

Finally, the generalization of the idea of Voronoi diagram
in L2-metric to Lp-metric for 1 < p < -, is straightforward.
The iterative algorithm presented is applicable for constructing
the order k Voronoi diagram in Lp-metric. Interested readers
are referred to [14].
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