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Abstract: The lifestyle of modern society has changed significantly 
with the emergence of artificial intelligence (AI), machine learning 
(ML), and deep learning (DL) technologies in recent years. Artificial 
intelligence is a multidimensional technology with various components 
such as advanced algorithms, ML and DL. Together, AI, ML, and DL 
are expected to provide automated devices to ophthalmologists for early 
diagnosis and timely treatment of ocular disorders in the near future. In 
fact, AI, ML, and DL have been used in ophthalmic setting to validate the 
diagnosis of diseases, read images, perform corneal topographic mapping 
and intraocular lens calculations. Diabetic retinopathy (DR), age-related 
macular degeneration (AMD), and glaucoma are the 3 most common 
causes of irreversible blindness on a global scale. Ophthalmic imaging 
provides a way to diagnose and objectively detect the progression of 
a number of pathologies including DR, AMD, glaucoma, and other 
ophthalmic disorders. There are 2 methods of imaging used as diagnostic 
methods in ophthalmic practice: fundus digital photography and optical 
coherence tomography (OCT). Of note, OCT has become the most widely 
used imaging modality in ophthalmology settings in the developed world. 
Changes in population demographics and lifestyle, extension of average 
lifespan, and the changing pattern of chronic diseases such as obesity, 
diabetes, DR, AMD, and glaucoma create a rising demand for such 
images. Furthermore, the limitation of availability of retina specialists 
and trained human graders is a major problem in many countries. 
Consequently, given the current population growth trends, it is inevitable 
that analyzing such images is time-consuming, costly, and prone to 
human error. Therefore, the detection and treatment of DR, AMD, 
glaucoma, and other ophthalmic disorders through unmanned automated 
applications system in the near future will be inevitable. We provide an 
overview of the potential impact of the current AI, ML, and DL methods 
and their applications on the early detection and treatment of DR, AMD, 
glaucoma, and other ophthalmic diseases.
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The pace of population aging is increasing around the globe, 
and patients suffering from eye diseases are expected to 

increase at the same rate. Thus, early diagnosis and appropriate 
treatment of ophthalmic diseases are of great importance to prevent 
avoidable visual loss and improve quality of life. However, 
conventional ophthalmic diagnostic methods profoundly depend 
on physicians’ experience and professional knowledge, which 
may lead to a high rate of misdiagnosis and waste a large 
amount of medical data. Therefore, deep integration of artificial 
intelligence (AI), machine learning (ML), and deep learning (DL) 
into ophthalmology has the potential to revolutionize the existing 
disease diagnosis system and create a significant clinical effect in 
ophthalmic health care service.1  

The name of ML was first coined by Arthur Samuel in 
1959, when he defined it as an application of AI that provides 
systems the ability to automatically learn and improve from 
experience without being explicitly programmed.2 On the other 
hand, AI is a technique that enables computer to mimic human 
behavior. It is divided into artificial narrow intelligence, artificial 
general intelligence, and artificial super intelligence. Of note, AI 
contains ML, DL, conventional machine learning (CML), natural 
language processing, computer vision, robotics, reasoning, 
general intelligence, expert system, automated learning, and 
scheduling.1,3

As mentioned, ML is a subfield of AI technology that 
systematically implements algorithms to synthesize the 
underlying interrelation between data and information.4 The 
scientific discipline, ML, is focusing on how computers learn 
from data; it is also an artificial computer intelligence system that 
allows computers to learn automatically without programming 
and without human intervention or assistance. In fact, with the 
advent of the internet, ML has become an important component of 
the information technology revolution affecting our daily lives in 
recent years. There are large numbers of successful applications 
of ML, such as medical practice, speech recognition, handwriting 
recognition, and machine translation. However, DL and CML 
are subfields of ML methods. Deep learning learns underlying 
features in data using neural networks. It usually focuses on data 
representation rather than task-specific algorithms; it can be 
supervised, semi-supervised, or unsupervised learning, making 
use of deep neural networks which are inspired by the structure 
and function of the human brain.5–7 

Taking into consideration the current population growth 
trends and the limited availability of retina specialists and 
trained human graders, manual segmentation is time consuming, 
costly, prone to human errors and bias, and disadvantageous 
in a clinical ophthalmic health care service. Therefore, the 
ophthalmic health care system, in particular, needs an automatic, 
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rapid, cost-effective, yet highly sensitive and specific method 
to detect diabetic retinopathy (DR), age-related macular 
degeneration (AMD), glaucoma, and other ophthalmic disorders. 
Unfortunately, many patients lose their vision unnecessarily due 
to late diagnosis .8–10

Ophthalmology, in comparison with other medical 
specialties, lends itself well to the implementation of AI-, ML-, 
and DL-assisted automated screening and diagnosis because of 
the wide use of ophthalmic images which provide an abundance 
of data to a computer algorithm. In the near future, for detection 
and treatment of DR, AMD, glaucoma and other ophthalmic 
disorders, the unmanned automated applications of AI, ML, and 
DL will be utilized as a potential alternative to ophthalmologists, 
retina specialists, and trained human graders. 

In this study, we reviewed the potential promising clinical 
applications of AI, ML, and DL in diagnosing DR, AMD, 
glaucoma and other ophthalmic disorders, and introduced 
the current AI, ML, and DL technologies with the ophthalmic 
imaging modalities. We believe that this review may provide 
both ophthalmologists and computer scientists a significant 
and detailed summary on AI, ML, and DL applications in 
ophthalmology and facilitate such potential promising clinical 
applications in the ophthalmology health care system. 

METHODS
We searched for reviews and original research studies in 

PubMed, Cochrane Library, EMBASE, Science Direct, Web of 
Science, and Google Scholar databases, using the terms “artificial 
intelligence”, “machine learning”, “deep learning”, “diabetic 
retinopathy”, “age-related macular degeneration”, “glaucoma”, 
and “ophthalmic disorders”. Only studies reported in English 
in recent years were included. Those articles on the potential 
clinical automated applications of AI, ML, and DL technologies 
in ophthalmic health care settings, with a focus on diseases with 
high prevalence and incidence, such as DR, AMD, glaucoma, and 
some ophthalmic disorders were reviewed.

RESULTS

Application of the Novel Methods in the 
Ophthalmic Disorders

A variety of articles concerning AI, ML, and DL automated 
applications in diagnosing ophthalmic diseases have been 
published recently. The majority of these studies are related to 
DR, AMD and glaucoma, which are the 3 most prevalent causes 
of irreversible blindness worldwide. In many recent studies, 
AI, ML, and DL techniques have been shown to be an effective 
diagnostic tool for detecting and identifying various eye diseases 
in ophthalmic health care services. These applications can make 
a great contribution to providing support to patients in remote 
areas where there are no experts, medical devices, and adequate 
infrastructure. These studies have indicated that AI, ML, and 
DL applications with high accuracy are capable of detecting and 
diagnosing multiple retina disorders with promising results in 
automated image analysis.11 

AI-ML-DL Algorithms in Diabetic Retinopathy
Diabetes mellitus (DM) has an increasing prevalence and 

incidence, affecting more than 415 million people worldwide, 
with approximately 1 of 11 adults being affected. By 2040, it is 
anticipated that approximately 600 million people will have DM. 
Diabetes is the most leading cause of adulthood blindness among 
the working-age population.1,12–15 Because of progressions in the 
treatment of DM, the surveillance of patients has improved and 
thus the frequency of DR and diabetic macular edema (DME) has 
increased. Diabetic retinopathy and DME cause blurring of central 
vision due to the developing retinal microvascular complications 
and fluid leakage from abnormal blood vessels in the retina of 
diabetic individuals. As a prevalent microvascular complication 
of DM, DR affects one-third of diabetic patients, leading to 
irreversible blindness. Undiagnosed and untreated DME is the 
major leading cause of severe visual impairment and blindness in 
working-age population.1,16,17 Therefore, there is an urgent need 
for large-scale screening of DR to detect potentially threatening 
changes at an early stage that would benefit management and 
treatment. It is known that early intervention is the most cost-
effective choice.18 Therefore, in order to prevent vision loss in time 
due to sight-threatening retinopathy, it is essential to have early 
detection of DR and DME through regular and close surveillance 
by clinical examination or grading of retinal photographs. Annual 
screening of the retina with fundus digital photography, fundus 
fluorescein angiography, and optical coherence tomography 
(OCT) is recommended but this presents a huge challenge and 
a problematic issue in many countries. Given the increased 
global prevalence of DM and DR, the limited availability of 
ophthalmologists, retina specialists and trained human graders, 
the delivery of optimal diabetic screening will be a problematic 
procedure for current global health care management. Analyzing 
such images is also time consuming, costly, and prone to 
human error. Therefore, these challenges may only be resolved 
through unmanned automated applications of novel methods of 
analysis without the need of engaging human professionals. It is 
inevitable that DR and DME will be detected by the automated 
retinal image analysis systems in the near future.19–22 Screening 
of DR is crucial and hence there is a need for a universal strategy 
for preventable blindness coupled with timely diagnosis and 
treatment. Unfortunately, DR screening programs are not being 
utilized to its full benefit because of organizational issues, lack of 
human graders, and financial problems.14 

Given the current population growth trends and the high 
prevalence of DR and DME in the community, the applications of 
automated screening and diagnosis are inevitable in ophthalmic 
health care settings. In order to improve the management of 
DR patients and to alleviate the social burden, automatic retinal 
screening techniques for the diagnosis of DR have been searched. 
Multiple AI, ML, and DL techniques have been applied to 
automatically diagnose and grade DR, and the most effective 
automated applications are based on studies over the past 3 years. 
Recent studies regarding DR revealed that AI, ML, and DL 
demonstrated high accuracy, sensitivity, and specificity for the 
detection of DR.14,22–25

The results of some studies on DR based on AI, ML, and DL 
modalities are given in detail below.

Ting et al14 assessed the performance of deep learning 
system (DLS), a ML technology with high potential for screening 
and detecting referable DR, vision-threatening DR, AMD, and 
possible glaucoma using 494,661 retinal images. They found that 
the respective areas under the receiver operating characteristic 
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curve (AUC), sensitivities, and specificities of DLS were 0.936, 
90.5%, and 91.6% for referable DR; 0.958, 100%, and 91.1% 
for vision-threatening DR; 0.931, 93.2%, and 88.7% for AMD; 
and 0.942, 96.4%, and 87.2% for possible glaucoma. In their 
multiethnic cohorts of patients with DM, DLS had high sensitivity 
and specificity for recognizing DR and related eye diseases, but 
additional studies were required to assess the applicability and 
validity of the DLS in the ophthalmic health care settings.

Tufail et al22 assessed whether the automated DR image 
assessment systems (ARIAS) can be safely introduced into DR 
screening pathways to replace human graders. They detected 
the sensitivity point estimates for any DR, referable DR, and 
proliferative DR of the 2 ARIAS were respectively: 94.7%, 
93.8%, and 99.6% for EyeArt; and 73.0%, 85.0%, and 97.9% for 
Retmarker. In view of the acceptable sensitivities for referable 
DR, they concluded that the ARIAS had a high potential for 
clinically effective and rapid detection of DR, and that it could be 
safely introduced into DR scanning programs to replace human 
graders and help delivery of DR screening in remote health care 
settings.

Abràmoff et al23 evaluated the sensitivity and specificity of 
the Iowa Detection Program for detecting referable DR by using 
automated analysis of retinal images. In this study, the AUC 
was 0.937, with sensitivity of 96.8% and specificity of 59.4%. 
However, the sensitivity/specificity of the 3 masked independent 
retina specialists were 0.80/0.98, 0.71/1.00, and 0.91/0.95, and 
the average intergrader or interobserver difference (κ) was 
0.822. They claimed that the Iowa Detection Program had high 
sensitivity and specificity for automated detection of referable 
DR. They also claimed that it could be introduced safely into DR 
screening program, potentially improving access to ophthalmic 
health care screening and reducing visual loss through early 
diagnosis and treatment of DR.

Deep learning algorithm (DLA) is expected to be a routine 
application in ophthalmic health care practice in the immediate 
future. However, further studies are needed to elucidate the 
applicability and validity of this algorithm in the clinical 
ophthalmic health care setting and to elucidate whether use of this 
algorithm could result in improved care and results comparable 
to current ophthalmologic appraisal.24 Gulshan et al24 developed 
a DLA for automated screening and detection of DR and DME 
in 128,175 retinal images by using a deep convolutional neural 
network (DCNN). In this study, for detecting referable DR, the 
algorithm of the AUC was 0.991 for EyePACS-1 data set and 
0.990 for Messidor-2 data set. Using the first operating cut point 
with high specificity, the sensitivity and specificity were 90.3% 
and 98.1%, respectively for EyePACS-1 data set; 87.0% and 
98.5%, respectively for Messidor-2 data set. Using the second 
operating cut point with high sensitivity, the sensitivity and 
specificity were 97.5% and 93.4%, respectively for EyePACS-1 
data set, and 96.1% and 93.9%, respectively for Messidor-2 data 
set. They claimed that ML and DL algorithms had high sensitivity 
and specificity for detecting referable DR. 

The detection of DR on the basis of color fundus photographs 
has been performed for years. The vast majority of studies of 
automated applications of AI, ML, and DL have focused mainly 
on the analysis of fundus photographs. If the validity, accuracy, 
reliability, sensitivity, and specificity of an AI-based DLA are 
reasonable, this application will be cost-effective in the health 
care settings. This technology will inevitably offer potential to 

increase the efficiency, sustainability, and accessibility of DR 
screening programs worldwide. Li et al25 developed an AI-based 
DLA for the detection of referable DR on the basis of color 
fundus photographs. In the internal validation data set, the AUC, 
sensitivity, and specificity of the DLA for vision-threatening 
referable DR were 0.989, 97.0%, and 91.4%, respectively. Testing 
against the independent multiethnic data set, the respective 
values were 0.955, 92.5%, and 98.5%. Among the false-positive 
cases, however, 85.6% were due to a misclassification of 
mild or moderate DR. Unobserved intraretinal microvascular 
abnormalities accounted for 77.3% of all false-negative cases. 
They claimed that AI-based DLA could be used with a good 
accuracy and reliability in the detection of vision-threatening 
referable DR in retinal images and that DLA technology also 
had a potential to increase the efficiency and accessibility of DR 
screening programs worldwide.

Automated application systems can help doctors understand 
DR predictions better and increase the applicability of intelligent 
diagnostic models in real-world clinical practice. From the above 
studies, the accuracy, validity, sensitivity, and specificity of the 
automated analysis of retinal images for detection of DR were 
very high and the diagnostic performance of AI, ML and DL 
was clinically acceptable and highly reproducible for validation 
data set. However, further studies are needed to elucidate 
the applicability and validity of these algorithms in clinical 
ophthalmic healthcare, and to clarify whether the use of this 
algorithm will lead to better care and outcomes compared with 
the current ophthalmological evaluation. 

AI-ML-DL Algorithms in AMD
As a significant cause of visual loss, AMD is a chronic 

macular disease characterized by drusen, retinal pigment 
changes, choroidal neovascularization, hemorrhage, exudation, 
and sometimes geographic atrophy which is an irreversible 
serious condition.26 It affects elderly population, resulting in 
visual impairment, depression, reduction in quality of life, and 
mortality.27,28 In fact, AMD and DR are the leading causes of 
blindness in adults older than 50 years in the US.29 Basically, 
macular degeneration is induced by drusen inside or outside 
the retinal pigment epithelium and generally leading to visual 
deterioration in AMD. There are 2 types of drusen, including hard 
drusen or soft drusen. Hard drusen can be found in all age groups 
and may progress to soft drusen. However, soft drusen is mostly 
found among the elderly population and may develop choroidal 
neovascularization leading to visual impairment. Therefore, 
the quantitative measurement of drusen is crucial in order to 
prevent macular degeneration. However, traditional manual 
drusen measurements with current visual examination take a 
lot of time, require considerable effort and with a less reliable 
outcome.30–32 Therefore, there are predictions based on drusen 
with AI, ML, and DL algorithms for making individualized 
predictions in AMD. These algorithms can predict about drusen 
underneath the retina in AMD. Algorithms of AI, ML, and DL 
provide automated detection of drusen, fluid, and geographic 
atrophy concerning AMD lesions to improve AMD diagnosis 
and treatment by using fundus images and spectral-domain 
OCT (SD-OCT).33–37 The automatic drusen detection with AI, 
ML and DL is likely to help ophthalmologists to improve the 
early and rapid diagnostic performance on fundus images.30 The 
accuracy of AI-, ML-, and DL-based automated assessment 
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of AMD is usually higher than 80%, which is consistent with 
manual evaluation by professionals, with an agreement reaching 
90%.33,36–38 

Intravitreal injection of anti–vascular endothelial growth 
factor (anti-VEGF) drugs is very important in the current 
management of neovascular AMD (nAMD) and close follow-up 
observation is paramount. The use of AI, ML, and DL to predict 
anti-VEGF injection requirements for patients with nAMD and 
proliferative DR can alleviate the economic burden of patients 
and facilitate resource management.39

Given the social population aging and the severity of this 
disease, it is necessary to perform AMD screening regularly. 
Automatic diagnosis of AMD may apparently reduce the workload 
of clinicians and hence increase productivity.40 Most of AI, ML, 
and DL techniques have been applied to automatically diagnose 
and grade AMD and the most effective automated applications 
are based on recent studies, which revealed that AI, ML, and 
DL demonstrated high accuracy, sensitivity, and specificity for 
the detection of AMD.41–45 The results of some studies on AMD 
based on AI, ML, and DL modalities are given in detail below.

Burlina et al41 developed an automated grading for detecting 
AMD from color fundus images by using DL methods and AI, 
namely, DCNN. They detected that the DCNN gave an accuracy 
of 88.4% to 91.6%, AUC of 0.94 to 0.96, and kappa coefficient 
of 0.764 to 0.829. They claimed that a DL-based automated 
assessment of AMD was consistent with manual professional 
evaluation and that automated algorithms could play a critical role 
in the present management of AMD, address costs of screening 
or monitoring, access to healthcare, and the appraisal of novel 
treatments.

Schlegl et al42 developed a fully DL-automated method to 
detect and quantify macular fluid caused by AMD, DME, and 
retinal vein occlusion (RVO) in conventional OCT images. They 
demonstrated that an automated diagnostic method based on DL 
achieved optimal accuracy for the detection and quantification 
of intraretinal cystoid fluid for AMD, DME, and RVO with 
a mean accuracy (AUC) of 0.94. However, the detection and 
measurement of subretinal fluid were also highly accurate with 
an AUC of 0.92, with superior performance in nAMD and RVO 
compared with DME. High correlation was verified between 
automated and manual fluid localization and quantification and 
the mean Pearson correlation coefficient was 0.90 for intraretinal 
cystoid fluid and 0.96 for subretinal fluid. They indicated that the 
detection and quantification of macular fluid based on DL could 
produce similar results to human performance levels. In addition, 
they claimed that DL-automated analysis of retinal OCT images 
ensured a promising horizon in improving accuracy and reliability 
of retinal diagnosis for clinical studies, practices, and care in the 
ophthalmic settings.

Burlina et al43 used the DL for severity characterization and 
estimation of 5-year risk of AMD patients by using 67,401 color 
fundus images. The weighted κ scores were 0.77 for the 4-step 
and 0.74 for the 9-step AMD severity scales. The overall mean 
estimation error for the 5-year risk ranged from 3.5% to 5.3%. 
Based on these findings, they suggested that DL-based automated 
assessment of AMD grading had performance comparable to that 
of human performance levels. Consequently, they claimed that 
DL had a potential to assist clinicians in providing care, clinical 
research of disease progression, and public screening around the 
world.

Grassmann et al44 developed a DLA for prediction of the 
severity scale of AMD based on color fundus photography. 
They pointed out that the algorithm detected 84.2% of all fundus 
images with signs of early or late AMD and 94.3% of healthy 
fundus images were categorized accurately. Their DLA showed a 
weighted κ outperforming human graders in the AMD study and 
was appropriate to categorize AMD fundus images in other data 
sets of individuals older than 55 years.

Peng et al45 assessed the severity and risk of progression of 
late AMD with DeepSeeNet, which is a DL model for automated 
classification of AMD severity from color fundus photographs. In 
this study, the performance of DeepSeeNet was compared with 
that of retina specialists. They demonstrated that DeepSeeNet 
achieved high AUCs in the detection of large drusen (0.94), 
pigmentary abnormalities (0.93) and late AMD (0.97), and that 
DeepSeeNet (accuracy, 0.671; kappa, 0.558) outperformed 
retina specialists (accuracy, 0.599; kappa, 0.467). DeepSeeNet 
also performed better than retina specialists in the detection of 
large drusen (accuracy, 0.742 vs 0.696; kappa, 0.601 vs 0.517) 
and pigmentary abnormalities (accuracy, 0.890 vs 0.813; kappa, 
0.723 vs 0.535). However, it showed lower performance in the 
detection of late AMD (accuracy, 0.967 vs 0.973; kappa, 0.663 
vs 0.754). In this study, DeepSeeNet had a high reliability and 
accuracy in the automated AMD risk categories. As a result, they 
claimed that DL systems had a potential to assist and enhance 
clinical decision of early AMD detection and risk prediction of 
the late AMD development.

In light of these studies, AI, ML, and DL have shown high 
accuracy, sensitivity, and specificity in the detection of AMD. 
These automated applications have provided similar results with 
trained human graders. Therefore, these automated applications 
will be a routine practice in the diagnosis and treatment of AMD 
in the near future.

AI-ML-DL Algorithms in Glaucoma
Glaucoma, the second most common cause of blindness 

worldwide, is characterized by progressive neurodegenerative 
of retinal ganglion cells and irreversible loss of axons from the 
optic nerve. Early diagnosis and treatment of glaucoma is hugely 
important for preventing avoidable blindness. It is very important 
that optic nerve head (ONH) and retinal nerve fiber layer (RNFL) 
around the optic disc are evaluated for early diagnosis of glaucoma. 
It is possible to evaluate glaucomatous structural changes 
quantitatively with OCT. However, extremely limited retinal 
imaging devices, retina specialists, general ophthalmologists, 
ophthalmic graders, eye clinics or hospitals pose a great problem 
in developed and developing countries. In addition, patients with 
glaucoma suffer from availability, accessibility, affordability, 
and sustainability of ophthalmic health care services problems 
especially in poor countries. It is therefore very important for 
automatic detection of glaucoma via AI, ML, and DL.46,47

The visual field (VF) defect is the main parameter of visual 
function during glaucoma progression. In order to construct 
the AI-, ML-, and DL-based glaucomatous diagnostic models, 
VFs, fundus images, and OCT scans have been used. Although 
a standard automated VF test is important in the diagnosis and 
management of glaucoma, it consumes much time and resources. 
Moreover, such a manual procedure performed by patients is 
subjective and has been challenging in epidemiological studies. 
In contrast, AI, ML and DL methods have shown excellent 
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performance in the classification of glaucoma and healthy eyes 
in a short time. Ophthalmologists can refer to these automated 
results and make better decisions in clinical practice.1,48

It is considered that AI, ML, and DL have a potential 
revolution for the screening, diagnosis, and classification of early 
detection of glaucoma. They also have the potential to recognize 
the development, progression, and treatment of glaucoma by 
identifying and assessing new risk factors. However, there is no 
clearly defined gold standard of these algorithms for determining 
the presence and severity of glaucoma. Therefore, in future 
studies, more robust disease definitions should be used to develop 
and optimize current methodologies and data inputs for AI, ML 
and DL analyses, and improve information acquisition methods 
from learned results.49 Multiple AI, ML, and DL techniques have 
been applied to automatically diagnose and grade glaucoma and 
the most effective automated applications are based on studies 
in the past few years. Recent studies on glaucoma revealed that 
AI, ML, and DL demonstrated high accuracy, sensitivity, and 
specificity for its detection.10,50–53 The results of some studies on 
glaucoma based on AI, ML, and DL modalities are given in detail 
below.

Devalla et al10 developed a DLS to digitally stain OCT 
images of the ONH and automatically measure its structural 
parameters. Their DLA was able to digitally stain the RNFL + 
prelamina, the retinal pigment epithelium, all other retinal layers, 
the choroid, and the peripapillary sclera and lamina cribrosa. For 
all tissues, the mean of the dice coefficient, sensitivity, specificity, 
intersection over union, and accuracy were 0.84 ± 0.03, 0.92 ± 
0.03, 0.99 ± 0.00, 0.89 ± 0.03, and 0.94 ± 0.02, respectively. They 
demonstrated that DLA could simultaneously stain the neural 
and connective tissues of the ONH. Furthermore, they indicated 
that digital staining also performed well on OCT images of both 
glaucoma and healthy individuals and that could offer very high 
reliability and accuracy for glaucoma management.

Li et al50 evaluated the performance and efficacy of a 
DLA for the detection and automated classification of referable 
glaucomatous optic neuropathy based on 48,116 color fundus 
photographs. They detected that DLS achieved referable 
glaucomatous optic neuropathy with an AUC of 0.986, sensitivity 
of 95.6% and specificity of 92.0%. However, coexistence of eye 
disorders especially pathologic or high myopia was the most 
common cause resulting in false-negative results. Besides, 
physiologic cupping of optic disc was the most common reason 
for false-positive results in their study.

By using standard automated perimetry with a DL 
modality, Asaoka et al51 differentiated the VFs of patients with 
preperimetric open-angle glaucoma from healthy eyes. They 
obtained a significantly larger AUC of 92.6% by using the deep 
feedforward neural network classifier compared with all other ML 
methods: 79.0% with random forests (RF), 77.6% with gradient 
boosting, 71.2% with support vector machine (SVM), and 66.7% 
with neural network. Using a deep feedforward neural network 
classifier, they indicated that preperimetric glaucoma VFs could 
be differentiated from healthy VFs with a good reliability and 
accuracy.

Kim et al52 aimed to develop ML models that have strong 
prediction power and interpretability for diagnosis of glaucoma 
based on RNFL thickness and VF. They indicated the accuracy, 
sensitivity, specificity, and the AUC were 0.98, 0.983, 0.975, and 
0.979, respectively. The developed prediction models showed 

high accuracy, sensitivity, specificity, and AUC in classifying 
among glaucoma and healthy eyes. They claimed that ML would 
be used for predicting glaucoma and hence clinicians could be 
able to make better decisions.

Asaoka et al53 constructed a DL model to diagnose early 
glaucoma from SD-OCT images for the input features of the 8 × 
8 grid macular RNFL thickness and ganglion cell complex layer 
thickness. The AUC, RF, and SVM were used for diagnostic 
accuracy. They demonstrated that the AUC with the DL (DCNN) 
model was 93.7%. The AUC significantly reduced by between 
76.6% and 78.8% without preliminary training. Significantly 
smaller AUCs were obtained with RF and SVM (82.0% and 
67.4%, respectively). Consequently, they detected that a DL 
model for glaucoma offered a substantive increase in diagnostic 
performance by using SD-OCT.

From the above studies, it is shown that the automated 
applications of AI, ML and DL are highly effective and have 
the potential to support the impending challenge of DR, AMD, 
and glaucoma screenings in developed as well as developing 
countries. It is certain that the advent of these novel automated 
applications is incredibly impressive and the AI, ML and DL 
algorithms can revolutionize ophthalmology health care system 
in the near future. In addition, the emergence of AI, ML and DL 
in ophthalmic health care settings may aid in prevention of DR, 
AMD, and glaucoma-associated irreversible blindness. Further 
studies are needed to determine the actual accuracy, sensitivity, 
specificity, and validity of these automated applications for 
diagnosis and detection of DR, AMD, and glaucoma.

DISCUSSION
In many areas of specialties, accurate and rapid evaluation of 

clinical images is not only for diagnosis, but also for treatment. 
However, repeatability, validity, accuracy, reliability, sensitivity, 
and specificity of clinical images are very important in clinical 
health care practices. For this reason, the development of vision 
algorithms with computers is crucial to help in the analysis of 
biomedical images. Evaluation of retinal images is usually 
performed by retina specialists in many ophthalmological settings. 
In fact, that is not an objective evaluation, and it is immensely 
time consuming with variable interpretation, repeatability, and 
interobserver agreement variation.54 Over the past decade, DL is a 
promising class of ML models that has become a popular subject 
in science setting. Deep learning has been used successfully 
for signal processing, pattern recognition, and statistical 
analysis. In addition, image processing and segmentation have 
been eased with DCNN. Undoubtedly, these results will have 
clinical implications and will positively reflect medical imaging 
procedures.7,54,55 Application of AI technology depends mainly on 
ML, which is represented by mathematical algorithms and models 
generated by many input experiences. In fact, AI can efficiently 
conduct ophthalmological image processing, mainly based on 
the fundus photographs. It is also likely to achieve a promising 
accuracy comparable to clinical experts.40,56 For example, it has 
been demonstrated that automatic ML algorithm for the detection 
and quantification of reticular pseudodrusen using multimodal 
information performed within the same range as the human 
graders.36 Consequently, in recent years, a variety of studies have 
highlighted that AI, ML, and DL algorithms were successfully 
used for automated retinal images applications.
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Computer algorithms can make a more objective evaluation 
of retinal disorders than before. In addition to DR,14,22–25 
AMD41–45 and glaucoma,10,50–53 AI, ML and DL have also been 
used to diagnose other retinal diseases, including central retinal 
vein occlusion (CRVO),57 rhegmatogenous retinal detachment 
(RRD),58 retinopathy of prematurity (ROP),59 and reticular 
pseudodrusen.36 Apart from retina, AI-based systems have 
been improved to better identify or appraise other ophthalmic 
disorders, including pediatric cataract,60 keratoconus (KC),61 
corneal ectasia,62 oculoplastic reconstruction,63 evaluation of 
corneal power after myopic corneal refractive surgery,64 making 
surgical plans in horizontal strabismus,65 and determining pigment 
epithelium detachment in polypoidal choroidal vasculopathy.66 
The results of some studies on CRVO, RRD, ROP, KC, and 
cataract based on AI, ML, and DL modalities are given in detail 
below.

As a vascular disease of the retina, CRVO leads to substantial 
visual morbidity and vision loss in the aging population.67 It 
shows up with dilated tortuous retinal veins, retinal hemorrhages, 
cotton-wool spots, macular edema, and optic edema.68 The DL 
technology has been used to show the presence of CRVO with 
Optos images. Such DL model has been shown to have higher 
sensitivity, specificity, and AUC values for detecting CRVO 
in Optos fundus photographs.57 This technology may have an 
important potential clinical benefit to reach area with large 
populations but without retina specialists.57 Therefore, early 
diagnosis and intervention of CRVO patients living in areas with 
inadequate ophthalmic care is very crucial for visual recovery. 
As with other ophthalmic diseases, automatic diagnosis in 
CRVO will also be potentially beneficial for both patients and 
ophthalmologists.57 

The RRD is a severe condition which can lead to visual loss. 
Early diagnosis and treatment of RRD is therefore crucial. Such 
disease is basically treatable, if managed appropriately and in a 
timely manner. If left untreated and proliferative changes develop, 
RRD can turn into an uncontrollable state called proliferative 
vitreoretinopathy. The Optos, the ultra-widefield scanning 
laser ophthalmoscope (Optos 200Tx; Optos PLC, Dunfermline, 
UK), can provide non-invasive, nonmydriatic, widefield fundus 
images, and has been used for diagnosis or follow-up of multiple 
fundus disorders and treatment assessment.58,69–71 However, 
due to rising social security costs and lack of retina specialists, 
the establishment of vitreoretinal centers providing modern 
ophthalmological procedures is not truly feasible.58 Ohsugi et 
al58 found that the sensitivity of RRD was 97.6%, specificity 
was 96.5%, and AUC was 0.988 in the DL model, compared 
with respective values of 97.5%, 89.3%, and 0.976 in the SVM  
model. In this study, the sensitivity and specificity of detecting 
RRD on the Optos fundus photographs were high with DL 
technology.

As a vasoproliferative disease affecting premature infants, 
ROP is a leading cause of childhood blindness worldwide and may 
be successfully treated with appropriate and timely diagnosis.40,59 
Clinical studies have shown that ROP requires close observation 
and timely treatment to prevent blindness. However, the rigorous 
and arduous repeated screening and follow-up of the ROP consume 
much resource, including manpower. Therefore, the application 
of AI in ROP screening may increase the effectiveness of ROP 
care.40,72,73 Campbell et al59 demonstrated that the diagnostic 
accuracy of the imaging and informatics in ROP (i-ROP) 

computer-based system was 95%, whereas the mean accuracy of 
11 expert physicians was 87%. Therefore, based on this study, it 
is possible to perform a computer-based image analysis system of 
the ROP comparable to retina specialists. 

Keratoconus is a bilateral and non-inflammatory eye 
disease characterized by progressive thinning, protrusion, and 
scarring of the cornea. However, the deterioration of cornea 
may be progressive, asymmetric, and thus resulting in distorted 
and decreased vision.74,75 Although the underlying cause of the 
disorder is still unknown, it mostly becomes clinically manifest 
at puberty in both sexes and may be related to various factors 
such as atopic disease, eye rubbing, contact lens use, connective 
tissue disease, tapetoretinal degeneration, inheritance, and Down 
syndrome.74 Model of ML has already been used in KC and other 
corneal disorders detection. In addition, artificial neural networks 
and discriminant analysis are ML techniques that have already 
been used to describe the topographical models of KC.75,76 For 
instance, Carvalho76 developed an artificial neural network with 
a sensitivity of 78.75%, specificity of 97.81%, and precision of 
94%.

Cataract characterized by clouding of the lens is one of the 
most prevalent diseases, causing bilateral blindness across the 
world.40,77 Ultraviolet and infrared rays or electromagnetic waves, 
smoking, diabetes, alcohol consumption, steroid medications, 
hormonal replacement therapy, malnutrition, synthetic 
chemical and pharmaceutical toxins, poor living conditions, 
hypoparathyroidism, galactosemia, eye surgery, inflammation 
and injury of the eye can lead to cataracts.78 Early diagnosis and 
treatment can regain vision and improve patients’ quality of life. 
By applying ML algorithms such as RF and SVM, the diagnosis 
and grading of cataract has been made by utilizing fundus images, 
ultrasound images, and visible wavelength eye images.79,80 The 
risk estimation model for posterior capsular opacification after 
phacoemulsification surgery is also predicted by algorithms.81 
Using DL models, senile cataract can be diagnosed.82 An 
impressive study showed that pediatric cataract is one of the 
primary causes of childhood blindness if it is not detected early 
and treated timely.83 It is not surprising that the application of ML 
for anterior segment diseases will become a frequent modality 
of ophthalmic settings.60,82,84,85 Given the prevalence of cataract 
in the community, its automatic recognition will offer a rapid, 
cost-effective, and more reliable practice.

There is no doubt that AI, ML, and DL methods have 
demonstrated significant advances in medicine.49 There are 
many goals of AI, including ML, DL, CML, natural language 
processing, computer vision, robotics, reasoning, general 
intelligence, expert system, automated learning and scheduling. 
As population aging is a growing trend around the world, 
more patients will suffer from eye diseases. Early diagnosis 
and timely treatment of eye diseases are known to be of great 
importance to prevent visual loss and improve quality of life. 
Due to the lack of ophthalmologists, retina specialists, graders 
and optimal eye devices, conventional diagnostic methods of 
the eye are inadequate. In addition, the conventional diagnostic 
methods depend on the experience and professional knowledge 
of physicians, leading to a high rate of misdiagnosis and wasting 
of large amount of medical data. Therefore, deep integration and 
adaptation of AI, ML, and DL technologies into ophthalmology 
has the potential to revolutionize current disease diagnose pattern 
and create a significant clinical impact.1
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Future of the Automated Applications (AI, ML, 
and DL) in Ophthalmic Clinical Trials

In recent years, AI, ML and DL techniques have been shown 
in various scientific studies as an effective diagnostic tool to 
identify various diseases in health care services. The accuracy 
of the models is incredibly promising, and AI, ML and DL 
applications can provide support to patients in remote areas by 
sharing expert knowledge and limited resources. For creating 
more reliable AI, ML and DL systems, OCT, OCT angiography, 
VF, and fundus images need to be integrated together. Most of 
the current studies regarding intelligent diagnosis of eye diseases 
focus on dual classification problems, whereas many patients 
suffer from multiple categorical retinal diseases in the clinical 
setting. It is therefore necessary to have a model for detecting and 
distinguishing DR, AMD, glaucoma, and other retinal disorders 
simultaneously. To detect and diagnose different retinal diseases 
with high accuracy, it is necessary to build further intelligent 
systems in clinical practice.1

It is certain that the advent of AI, ML, and DL applications 
is incredibly impressive. Although these technologies are not 
yet mature enough to be implemented in the clinical setting, 
they offer a unique revolutionary breakthrough in the health 
care applications. For this reason, further studies are needed to 
elucidate the algorithms based on AI, ML, and DL to evaluate 
their sensitivity, specificity, and validity for detecting DR, DME, 
AMD, glaucoma, and other ophthalmic disorders. In addition, 
further researches are essential to identify the applicability of 
these algorithms in the clinical setting and to identify whether the 
use of these algorithms could lead to improved health care and 
to identify their outcomes compared with current ophthalmologic 
assessment. In the near future,  AI-, ML-, and DL-assisted 
automated screening and diagnosis may help minimize doctors’ 
burden and maximize their role at the ophthalmology clinics.40 
The platforms of AI, ML, and DL can provide patients with more 
medical opportunities and reduce barriers to access to an eye care 
clinic without an ophthalmologist.40 In addition, new technologies 
based on AI, ML, and DL can reduce social inequalities.86 It 
seems that the health care industry will be reshaped by AI, ML 
and DL completely in the near future. However, as AI, ML, and 
DL gradually move from the virtual into the real world, artificial 
neural networks are vulnerable to cyber threat, hacks, and 
deception.

The intelligent systems will be adopted in some specific 
clinical ophthalmic studies in the near future. Although ethics, 
regulatory, and legal issues are challenging, AI, ML and DL will 
revolutionize the diagnosis and treatment of diseases and will 
have a significant clinical impact in the health system in the near 
future.

CONCLUSION
Automated retinal imaging technologies may potentially 

reduce the barriers to access to health care system and health 
screening, thus it may help reduce avoidable blindness across 
the world. If these technologies are widely embraced by health 
care authorities and ophthalmologists, it will have an immense 
favorable impact on medical community and ophthalmology 
society. On the other hand, it is very important to evaluate the 
repeatability, validity, accuracy, reliability, sensitivity, specificity, 
and correct disease staging of retinal scanning algorithms 

based on AI, ML, and DL in the clinical health care practice. 
As AI becomes more sophisticated, there may be many ethical 
challenges ahead, including transparency, bias, human values, 
data protection and intellectual property, social dislocation, 
cyber security, decision making, liability, legal and regulatory 
issue. In spite of these issues, AI, ML, and DL will contribute 
significantly to make a breakthrough diagnostic and treatment 
pattern and create a substantial clinical impact in the near future. 
We believe that this review may provide detailed, important, 
interesting, and diverse information to both ophthalmologists 
and computer scientists about the AI, ML and DL applications 
in the ophthalmology health care platforms and help facilitate 
promising clinical practices in the future.
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