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Innovation

ABSTRACT
Artificial intelligence  (AI) and machine learning  (ML) have entered several avenues of modern life, and health care is just one of them. 
Ophthalmology is a field with a lot of imaging and measurable data, thus ideal for application of AI and ML. Many of these are still in research 
stage, but show promising results. The ophthalmic diseases where AI is being used are diabetic retinopathy, glaucoma, age‑related macular 
degeneration, retinopathy of prematurity, retinal vascular occlusions, keratoconus, cataract, refractive errors, retinal detachment, squint, and 
ocular cancers. It is also useful for intraocular lens power calculation, planning squint surgeries, and planning intravitreal antivascular endothelial 
growth factor injections. In addition, AI can detect cognitive impairment, dementia, Alzheimer’s disease, stroke risk, and so on from fundus 
photographs and optical coherence tomography. We will surely see many more innovations in this rapidly growing field.

Keywords: Artificial intelligence, convolutional neural networks, deep learning, glaucoma artificial intelligence, 
machine learning

INTRODUCTION

John McCarthy described artificial intelligence  (AI) as the 
“science of creating intelligent machines which replicated 
human behaviour.” That had remained very much a part of 
science fiction until recently when more powerful computer 
hardware allowed the development of computing intensive 
algorithms and machine learning (ML) programming. This is 
now a part of the Fourth Industrial Revolution, which includes 
AI, autonomous vehicles, blockchain, robotics, internet of 
things, advanced biotechnology, and three‑dimensional (3D) 
printing.[1] ML is a subtype of AI, where the software learns 
from large volumes of example data by trial and error without 
explicit instructions on how to derive the required output. 
Deep learning (DL) is a subtype of ML, which uses multiple 
layers of convolutional neural networks  (CNNs), which 
are made of software‑defined “neurons” which together 
try to figure out the instructions to process data to get 
information [Figure 1].

Generative adversarial networks  (GANs) are a class of ML 
system that can generate new data based on training data. 

They are paired neural networks used for unsupervised ML, 
where the generative neural network generates images or 
other data and the discriminative neural network evaluates 
it and gives feedback to help in the learning process. It is 
also useful for semi‑supervised learning, fully supervised 
learning, and reinforcement learning. They can potentially 
be used to make deepfakes such as fake fundus lesions on a 
normal fundus photograph. Israeli researchers showed how 
they could insert or remove fake lung cancer lesions in a 
normal computed tomography  (CT) scan in milliseconds.[2] 
They showed how the hospital’s CT scan and picture archiving 
and communication system was easily compromised using a 
cheap Raspberry Pi with a fake 3D‑printed logo of the CT scan 
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company. This was done on high‑resolution volumetric CT 
scans, so doing this on fundus photographs is much simpler.

Computer programming has typically depended on a series of 
precise sequential instructions written by a programmer. The 
software programmer had to know in advance what sort of 
input data the software would receive and how to process the 
data to produce the information that is required. However, 
with ML, the computer program figures out the instructions 
by itself based on example inputs and outputs. Once the 
software has finished learning, it is often not apparent to 
the programmer how exactly the ML program that they had 
written generates the required output. This is called the black 
box problem and the source of much of the trust issues with 
AI‑generated reports. Newer AI software opens up the black 
box using an Integrated Gradients Explanation algorithm 
to show a heatmap or attention map as Google researchers 
demonstrated [Figure 2].[3]

A typical AI solution is a software installed on a powerful 
computer  (ML server), which is accessed via the internet. 
The input data are uploaded onto the ML server, which takes 
some time to process it (seconds to minutes depending on 
complexity of data analysis and processing speed of the 
server). The output can be accessed via the internet.

In the medical field, ophthalmology,[4] radiology,[5] 
dermatology,[6] pathology,[7] pediatrics,[8] gynecology,[9] 
oncology,[10] endocrinology,[11] and cardiology[12] have joined 
the AI revolution. Most of this is because of the huge volume 
of nonstandardized image processing required in these fields, 
which is very difficult in conventional programming but 
much simpler to implement with ML. In addition to image 
processing, analysis of big data, making predictions, and 

finding efficient use of resources are other areas where ML 
can help in the medical field.

For ophthalmology in particular, the most common use 
of AI has been in analysis of retinal fundus[13] images for 
diabetic retinopathy (DR), followed by age‑related macular 
degeneration  (ARMD), glaucoma, and retinopathy of 
prematurity (ROP). Huge advancements have been made in 
this field with the advent of offline AI which can now run the 
final algorithm on a smartphone, whereas earlier a powerful 
server computer was required. However, fundus image 
analysis is the only part of the picture, as various other arenas 
of ophthalmology from intraocular lens (IOL) calculation to 
myopia prediction to smart electronic medical records (EMRs) 
are now based on AI.

Major tech companies have taken an interest in AI for 
ophthalmic use. Google’s DeepMind Health, in a research with 
Moorfields Eye Hospital, showed that it can detect fifty eye 
diseases[14] from optical coherence tomography (OCT) scans for 
referral. IBM’s AI can predict visual field data from OCT scans.[15] 
Microsoft Intelligent Network for Eyecare[16] is a collaboration 
to apply AI to eliminate avoidable blindness and scale eyecare 
delivery systems. Several authors have reviewed the current 
state of AI in ophthalmology, but newer applications are coming 
out every few months.[17‑24] The current commercially available 
AI solutions include Netra.AI (Leben Care Technologies Pte., 
Ltd.),[25] Pegasus  (Visulytix Ltd.),[26] Medios AI  (Remidio Pvt., 
Ltd.),[27] and IDx‑DR (IDx Technologies Inc.).[28]

Let us look at some of the applications of AI and ML in 
ophthalmology.

Figure  1: Relationship between artificial intelligence, machine learning, 
deep learning, convolutional neural networks, and generative adversarial 
networks

Figure  2: Representation of black box problem in artificial intelligence. 
Typical artificial intelligence does not show how the analysis works. By 
modifying the internal working, “Open” artificial intelligence shows the 
segmentation and heatmap by which the image was analyzed and arrived 
at a diagnosis
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Diabetic retinopathy
The most widely known use of AI in ophthalmology is for 
the evaluation of DR from fundus photographs, which has 
several studies and reviews [Figure 3].[29‑36]

The first US Food and Drug Administration‑approved 
autonomous AI diagnostic device was IDX‑DR for detecting 
“more than mild” DR and diabetic macular edema.[37]

Typically, ML systems run on a powerful server computer. 
Fundus images taken using a fundus camera are collected 
and evaluated later or they are uploaded through the 
internet to the powerful server which generates the report 
and sends it back to the device. With the advent of low‑cost 
smartphone‑based fundus cameras such as DIYretcam,[38] 
T3retcam,[39] MIIretcam,[40] JaizRetcam, and Hopescope, 
quick image analysis would be invaluable. In a recent 
study, Sosale et al. evaluated an offline AI (Medios AI) on a 
Remidio Fundus‑on‑Phone  (Remidio Innovative Solutions 
Pvt. Ltd., Bengaluru, Karnataka, India) and showed a high 
sensitivity (93%) and specificity (92.5%).[41] Offline AI would 
make this technology accessible in areas with poor network 
connectivity.

Glaucoma
Glaucoma evaluation involves measurement of intraocular 
pressure, optic disc cupping, visual fields, gonioscopy, 
and optical coherence tomography for retinal nerve fiber 
layer (RNFL) and ganglion cell layer (GCL) thickness. We fail 
to recognize that the regular OCT machines automatically 
measure disc size, cupping, neuroretinal rim area, RNFL 
thickness, and GCL thickness and all such parameters 
using AI image processing techniques called segmentation. 
A  comprehensive AI for glaucoma should evaluate all the 
parameters including IOP, disc, gonioscopy, fields, and 
OCT together; however, such an AI system is not ready yet. 
Several studies evaluated various AI and ML systems for 
glaucoma.[42,43]

Martin et  al. analyzed pooled data from 24 prospective 
clinical trials of a contact lens sensor for intraocular pressure 
monitoring (SENSIMED Triggerfish, Sensimed AG, Lausanne, 
Switzerland).[44] They used an ML approach called random 
forest modeling to identify the parameters associated with 
the primary open‑angle glaucoma patients.

Niwas et al. evaluated a fully automated model to classify 
angle closure glaucoma from anterior segment OCT scans 
and showed an accuracy of 89.2%.[45]

For fundus photographs, Li et al. evaluated a DL algorithm that 
showed a high sensitivity (95.6%) and specificity (92%) to detect 
referable glaucomatous optic neuropathy.[46] The disadvantage 
was that high myopia caused false negatives and physiological 
cupping caused false positives. Al‑Aswad et  al. evaluated 
Pegasus (Visulytix Ltd., London, UK), a DL system to detect 
glaucomatous optic neuropathy from color fundus photographs 
and showed that it outperformed 5 out of 6 ophthalmologists 
in the study.[47] Netra.AI  (Leben Care Technologies Pte., 
Ltd.) is another AI that evaluates glaucomatous fundus 
photographs [Figure 4]. Several other studies also looked at 
different techniques to detect glaucomatous optic neuropathy 
from disc photographs [Figure 5].[48‑50]

Muhammad et al. showed that a hybrid deep learning method 
on a single, wide‑field swept‑source OCT had 93.1% sensitivity 
in detecting glaucoma suspects.[51] Asaoka et al. evaluated 
a DL algorithm with pretraining that diagnosed glaucoma 
based on macular OCT for RNFL and GCL.[52] Other studies 
evaluated unsupervised ML, ML classifiers (MLCs), artificial 
neural networks  (ANNs), support vector machines, and 
segmentation methods for glaucoma OCT.[53‑56]

Figure 4: Retinal fundus photo of the left eye of a glaucoma patient in which 
the vertical disc and cup margins have been demarcated by the Netra.
AI (Leben Care Technologies Pte., Ltd.)

Figure  3: (a) Retinal fundus photo of the left eye of a diabetic patient. 
(b) Same image after artificial intelligence analysis by Netra.AI  (Leben 
Care Technologies Pte., Ltd.) with the superficial hemorrhages, deep 
hemorrhages, and hard exudates

ba
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Visual fields are difficult to interpret, so AI help would be 
appreciated in this context. Asaoka et al. used a feedforward 
neural network to identify preperimetric visual fields which 
did not meet Anderson–Patella’s criteria from healthy visual 
fields.[57] Li et al. evaluated a CNN to automatically differentiate 
glaucoma VF from nonglaucoma VF.[58] Goldbaum et al. used 
unsupervised ML and variational Bayesian independent 
component analysis mixture model (vB‑ICA‑mm) to analyze VF 
defects.[59] Andersson et al. showed that a trained ANN obtained 
93% sensitivity and 91% specificity in evaluating glaucoma VF 
and performed at least as well as clinicians.[60] Bowd et  al. 
successfully used vB‑ICA‑mm, an unsupervised MLC, to analyze 
frequency‑doubling technology perimetry data.[61]

For visual field progression analysis, Goldbaum et al. used 
progression of patterns, an MLC algorithm.[62] Yousefi et al. 
showed that ML detects VF progressing consistently, without 
confirmation visits and even slow progression.[63] All these 
methods would ideally run on portable perimetry devices 
like the smartphone‑based virtual reality perimetry such as 
PeriScreener, VirtualEye, and C3FA.[64]

Wen et  al. trained a DL system with 32,443 visual fields 
(24‑2 HVFs) taken between 1998 and 2018, and the resulting 
CascadeNet‑5 model was able to predict future visual fields 
for up to 5.5 years based on a single input visual field.[65] 
Kazemian et  al. developed and validated Kalman filters, 
which could predict personalized trajectory of progression 
of mean deviation of visual fields at different target IOPs.[66] 
This would guide ophthalmologists in choosing a specific 
patient’s target IOP.

Retinopathy of prematurity
AI tools for ROP screening[67‑69] from fundus images from 
cameras such as RetCam (Massie Research Laboratories, Inc., 

Dublin, California) include ROPTool,[70] retinal image multiscale 
analysis,[71] computer‑assisted image analysis of the retina,[72] 
and imaging and informatics in ROP  (i‑ROP).[73] Diagnostic 
accuracy of the i-ROP system (95%), which incorporated 
tortuosity of arteries and veins, was comparable to expert 
ophthalmologists.[73]

Age‑related macular degeneration
Some ML algorithms have been trained to detect and grade 
ARMD from color fundus photographs.[74‑78] Some other ML 
algorithms can detect ARMD from OCT scans.[79‑82] A few other 
ML systems can predict visual acuity[83,84] and requirement of 
antivascular endothelial growth factor  (VEGF)[85] from OCT 
scans.

Retinal vascular occlusions
ML algorithms can detect central retinal vein occlusion[86] 
and branch retinal vein occlusion[87] from wide‑field 
fundus photographs or from fluorescein angiograms[88] 
and quantify the resulting macular edema[81] by OCT. 
Another study also used ML to evaluate the impact of 
vitreomacular adhesion on anti‑VEGF therapy for retinal 
vein occlusions.[89]

Optical coherence tomography
Inbuilt segmentation of scans in OCT machines is a type 
of AI. OCT scans can be evaluated for glaucoma, DR, and 
several other retinal diseases. Kuwayama et al. showed the 
feasibility of automated detection of macular diseases such 
as epiretinal membrane, DR, and ARMD from OCT and found 
that image augmentation is effective when the number of 
training images is low.[90]

Sumaroka et al. used a supervised ML to predict perimetry 
results from OCT scans of retinitis pigmentosa and Leber 
congenital amaurosis patients.[91]

Fluid intelligence is a mobile AI app that runs on Android 
or iPhone, which allows you to take a photo of an OCT 
scan and detect macular edema or subretinal fluid. Odaibo 
et al. evaluated this app and found a sensitivity of 89.3% and 
specificity of 81.25% [Figure 6].[92]

Other retinal diseases
O h s u g i  e t   a l .  s h o w e d  t h a t  D L  c a n  d e t e c t 
rhegmatogenous retinal detachment from ultra‑wide‑field 
fundus photographs with a sensitivity of 97.6% and 
specificity of 95.6%.[93]

Xu et al. evaluated a dual‑stage DL system to identify and 
segment pigment epithelial detachment (PED) in polypoidal 
choroidal vasculopathy (PCV) from OCT scans.[94]

Figure 5: Localized and segmented image of disc from previous fundus image 
in which disc and cup margins are segmented. On the right, vertical cup: disc 
ratio, horizontal cup: disc ratio, and disc damage likelihood stage are shown 
along with the violated ISNT rule graph (inferior superior nasal and temporal 
neuroretinal rim) (Image courtesy: Leben Care Technologies Pte., Ltd.)
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Keratoconus
AI has been used to detect keratoconus and forme fruste 
keratoconus[95] from Placido topography, Scheimpflug 
tomography,[96] SD‑ASOCT, and biomechanical metrics (Corvis 
ST, corneal hysteresis).[97] Data from Pentacam,[98] Sirius,[99] 
Orbscan II,[100] Galilei,[101] and TMS‑1[102] topographers and 
tomographers have been studied using ML algorithms to 
detect early keratoconus.

Other corneal diseases
Ambrósio et  al. evaluated AI‑based tomographic and 
biomechanical index (TBI), which combines Scheimpflug‑based 
corneal tomography and biomechanics  (Corvis ST) for 
enhancing ectasia detection.[103] Sharif et  al. showed that 
confocal microscopy images of the cornea can be evaluated 
in detail using a committee machine formed from ANNs 
and adaptive neuro‑fuzzy inference systems that can detect 
abnormalities with high accuracy and can visualize in 3D.[104]

Cataract grading
Mahesh Kumar and Gunasundari developed a computer‑aided 
diagnosis system to detect corneal arcus and cataract from 
the photographs of eyes taken with a standard digital 
camera.[105] Gao et  al. proposed a system to automatically 
grade cataract from slit‑lamp images.[106]

Caixinha et al. proposed grading of cataract hardness  using 
ultrasound in an animal model using ML.[107] Yang et  al. 
demonstrated grading of cataract   from clarity of retinal 
fundus photographs with an accuracy of 93.2% in detecting 
cataract and 84.5% in grading cataract.[108] Zhang et  al. 

reported a similar accuracy of 93.52% for detecting cataract 
and 86.69% for grading cataract with their method using 
fundus photographs.[109]

Mohammadi et al. predicted the risk for posterior capsule 
opacification (PCO) using AI with an accuracy of 87%.[110]

Gillner et  al. demonstrated automated segmentation 
o f  a n  a c c o m m o d a t i v e  i n t r a o c u l a r  l e n s  i n  a 
biomechanical eye model using OCT.[111] This can potentially 
be used to study the working of accommodative lens and 
design better IOLs.

Pediatric ophthalmology
AI and ML have been used for congenital cataract diagnosis,[112] 
collaborative management,[113] and prediction of surgical 
complications of pediatric cataract surgery.[114]

It can also be used to detect strabismus[115] and refractive 
error, predict future high myopia, and diagnose reading 
disability.[116] There have also been studies to automatically 
detect leukocoria in children from recreational smartphone or 
digital camera photographs, which suggests ocular pathology 
that requires screening.[117,118]

Almeida et al. presented a methodology based on support 
vector regression for planning surgical resections and 
recessions for horizontal strabismus surgeries which showed 
good accuracy.[119]

Ocular oncology
A technique to demarcate the boundary of ocular surface 
squamous neoplasia from unstained biopsy specimens using 
multispectral imaging and ML was described by Habibalahi 
et al.[120] This can potentially be used intraoperatively for rapid 
assessment of cancer‑free margins.

Tan et al. showed that a supervised ML decision tree model 
was able to predict the complexity of reconstructive surgery 
after excision of periocular basal cell carcinoma.[121]

Refractive error prediction
Das et al. from LV Prasad Eye Institute, India, presented a 
study that predicted the progression of myopia and refractive 
error in children using ML on data such as age, gender, onset 
of refractive error, current refractive error, visual acuity, 
and other clinical information.[122] Zhang et al. validated the 
accuracy of a model to predict onset of myopia in children 
using ocular biometry, height, weight, and presenting visual 
acuity.[123] Lin et al. developed an algorithm to use refraction 
data from EMRs to predict refraction values at future time 
points.[124]

Figure 6: Screenshots of Fluid Intelligence App on Android after evaluating 
optical coherence tomography scans uploaded from mobile (Image courtesy: 
Fluid Intelligence App)
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Surprisingly, Varadarajan et al. from Google used DL using 
TensorFlow for predicting refractive error from only 
retinal fundus photographs.[125] The attention map which 
opens up the black box of the ML algorithm showed that 
features on the fovea were important to predict refractive 
error including spherical equivalent, spherical, and 
cylindrical powers. Liu et  al. presented the Pathological 
Myopia Detection Through Peripapillary Atrophy system 
to detect pathological myopia from retinal images by 
the detection of parapapillary atrophy.[126] Zhang et  al. 
further demonstrated the diagnosis of pathological 
myopia by combining heterogeneous biomedical data, 
including demographic data, fundus imaging data, and 
single‑nucleotide polymorphism data.[127]

Koprowski et al. demonstrated the use of ANNs to predict 
the corneal power after myopic refractive surgery with good 
accuracy (0.16 ± 0.14 diopters).[128]

Intraocular lens power calculation
IOL power calculations have always been an approximate 
estimate from several parameters and are thus suited for ML 
algorithms. AI‑powered IOL calculations include Hill‑Radial 
Basis Function (RBF),[129] Ladas Super Formula,[130,131] Clarke 
Neural Network,[132] and FullMonte Method. A  few other 
studies have also attempted to use AI for IOL calculation.[133‑135] 
Kane et al., in 2017, had compared the accuracy of Hill‑RBF, 
Ladas Super Formula, and FullMonte with that of Holladay 
1 and Barrett Universal II, but did not find them to be more 
accurate.[136]

The best known AI formula is the Hill‑RBF formula[129] by 
Dr. Warren Hill, available online at https://rbfcalculator.com/
online/, which uses pattern recognition and data interpolation. 
It is currently in version 2.0 and uses data from 12,419 eyes. 
Biometry data required include axial length, anterior chamber 
depth, and keratometry values and their axes. Optional data 
which can improve accuracy include central corneal thickness, 
lens thickness, and white‑to‑white [Figure 7].

Dementia and Alzheimer’s disease
Retinal vascular changes not detectable by human 
ophthalmologists are present in neurological diseases[137] such 
as cognitive impairment,[138] dementia,[139‑141] and Alzheimer’s 
disease,[142‑144] which can be detected by ML algorithms from 
fundus photography and OCT. Carl Zeiss Meditech holds a 
patent for a method and system for detecting the effects of 
Alzheimer’s disease in the human retina.[145]

Predicting cardiovascular and stroke risk
In a study by Google, Poplin et al. trained a DL AI using data from 
284,335 patients and validated on two independent datasets 
of 12,026 and 999  patients. From fundus photographs, 
the AI was able to predict age (mean error of 3.26 years), 
gender (AUC = 0.97), smoking status (AUC = 0.71), systolic 
blood pressure  (mean error of 11.23 mmHg), and major 
adverse cardiac events (AUC = 0.70). They noted that AI used 
anatomical features of the fundus photo such as optic disc and 
blood vessels to make the predictions. This can potentially 
help humans to learn from the AI regarding how to predict 
these from fundus photos.

Figure  7: Website of artificial intelligence based Hill‑Radial Basis Function intraocular lens power calculator showing the parameters entered  (image 
courtesy: rbfcalculator.com)
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Automatic retinal image analysis of fundus photos by an 
ML algorithm can predict the presence of white matter 
hyperintensities on magnetic resonance imaging brain, which 
is a risk for cerebral small vessel disease and stroke.[146]

CONCLUSION

The age of AI and ML has definitely arrived. However, 
the accuracy and reliability of the systems in a real‑world 
clinical scenario is questionable. AI and ML should augment 
the clinician skill and can only be considered a tool. AI in 
ophthalmology would probably find the best application 
in screening camps and teleophthalmology.[147] This could 
also be applied in virtual clinics[148] to reduce the number 
of onward referrals to higher centers. Currently available 
medical diagnosis apps include Ada  (available on Android 
and Apple phones), Babylon, and Your.MD, and though they 
sometimes give correct diagnosis, they cannot be relied on 
for critical decisions. Fundus photographs can be analyzed 
on Orbis Cybersight Consult website in the clinical cases 
section. Many newer fundus cameras and OCT machines 
might come inbuilt AI software. EMRs may be integrated 
with a cloud AI system.

Ophthalmologists should know about the AI resources 
available to them and make judicious use of them when 
understanding their limitations.
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