
Review

Ellipsoid zone on optical coherence tomography: a
review
Lingwei William Tao MBBS,1 Zhichao Wu PhD,1 Robyn H Guymer PhD FRANZCO1,2 and Chi D Luu PhD1,2

1Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, and 2Department of Surgery (Ophthalmology), The University
of Melbourne, Melbourne, Victoria, Australia

ABSTRACT

Emergence of the high-resolution optical coherence
tomography has allowed better delineation of retinal
layers, and many of the anatomical correlations of
these layers have now been agreed upon. However,
some anatomical correlates still remain contentious,
such as the second hyper-reflective band, which is
now termed ellipsoid zone. Despite the lack of consen-
sus of the actual origin of the ellipsoid zone, there has
been much interest in evaluating its integrity and
intensity in different disease processes. This review
paper aims to provide an overview of the ellipsoid zone
and its clinical and research applications.

Key words: diagnostic study, diagnostic technique, retinal
disease, retinal imaging.

INTRODUCTION

Since its first emergence two decades ago, optical
coherence tomography (OCT) has revolutionized
our ability to visualize the retina in vivo and to iden-
tify the anatomical correlates of pathological changes
in ocular diseases. As such, it has facilitated in the
clinical management of various retinal and optic
nerve conditions.1

Optical coherence tomography has demonstrated
its potential for identifying novel markers of different
disease states as it allows detection of ultrastructural

changes in the retina when there is no clinical corre-
late to visualize. Improved resolution with advances
in OCT technology has allowed the delineation of
individual retinal layers providing more information
to increasing our knowledge of specific subclinical
changes in many retinal diseases such as drusen
ultrastructure in age-related macular degeneration
(AMD),2 optic nerve head and retinal nerve fibre
layer in glaucoma.3–5 The emergence of the spectral
domainOCT (SD-OCT) has allowedbetter delineation
of retinal layers such as the vitreoretinal interface,
inner and outer retina, retinal pigment epithelium
(RPE) and choroid. Many of these layers have been
universally agreed upon; however, some anatomical
correlates remain contentious,6 such as the second
hyper-reflective band. This band was previously
believed to represent the junction between the inner
and outer segments (IS/OS junction) of the photore-
ceptors.1,7,8 More recent evidence suggests that the
second hyper-reflective band corresponds with the
anatomical location of the ellipsoid portion of the
photoreceptors inner segment.1,7,8 In an effort to come
to a consensus on the anatomical correlates with OCT
description of each layer, an international panel with
expertise in vitreoretinal diseases and imaging met
in 2014 to access available evidence and provide
recommended OCT terminology.6 The international
nomenclature consensus panel recommended the
second hyper-reflective band be termed as the ellip-
soid zone (EZ), as it avoids attribution of the OCT
feature specifically to a single anatomic structure until
more definitive evidence becomes available, and this
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paper will use this terminology throughout. Despite
the lack of consensus of the actual origin of the EZ,
there has beenmuch interest in its appearance particu-
larly evaluating its integrity and intensity in different
disease processes.9–24 In this review paper, we
provided an overview of the EZ and its clinical and
research applications.

Optical coherence tomography

Optical coherence tomography is a non-invasive
imaging modality that produces high-resolution
cross-section images of the retinal microanatomy.25

The principle of OCT is based on low-coherence
interferometry, which analyses the difference in
back-scattered light from tissues.25,26 OCT utilizes a
broadband light source, which is first split into a
reference and sample beam. With the back-scattered
beam from the retina generating an interference pat-
tern with the reference beam, a reflectivity versus
depth profile can be constructed.25,27 Initially, OCT
was only able to provide axial resolution of around
10 to 20μm, which did not allow for the further
differentiation of the neurosensory retina and the
RPE, which appeared as one single highly reflective
band.28 Earlier generation time-domain OCT
(TD-OCT) like Stratus OCT (Carl Zeiss Meditec,
Inc., Dublin, CA, USA) employed time-domain
method that allowed a 400 A-scans per second scan
rate with an axial resolution of 8 to 10μm.27 The
newer generation SD-OCT, such as the Spectralis
(Heidelberg Engineering GmbH, Heidelberg,
Germany) and Cirrus OCT (Carl Zeiss Meditec,
Dublin, CA, USA), employs an interferometer and
spectrometer, which analyses back-scattered light
interference pattern simultaneously through Fourier
transform algorithm.29,30 This innovative technique
enabled an axial resolution of 5 to 7μm, faster
scan rates at 20000 to 52000 A-scans per second
and better signal-to-noise ratio compared with
TD-OCT.26,29–32 The improved delineation of differ-
ent retinal layers makes this modality ideal for
clinical diagnosis and management of ocular diseases
(Fig. 1).

Retinal ultrastructures visualized by OCT

Based upon early TD-OCT, structural correlations
with the OCT images were first reported. In 1991, a
TD-OCT was capable of producing a single A-scan
in 1.25 s with an axial resolution of 17μm.25 The
inner retina hyper-reflective zone was reported to
represent the nerve fibre layer, but the outer retina
hypo-reflective zone was not further described. Using
different animal models, comparisons between OCT
images and histological data were considered. Using
Macaca mulatta, Toth et al.33 found that the outer

nuclear layer and the inner and outer segments of
the photoreceptors had low relative reflectivity. In a
study using chickens, Huang et al.34 showed a
hyper-reflective zone in outer retina, which they
speculated to be associated with the increase in local
refractive index at the photoreceptor inner segment
because of the presence of mitochondria.

In early 2000, the ability to perform higher resolu-
tion OCT allowed various layers of the outer retina to
be delineated. Three to four distinct hyper-reflective
bands on SD-OCT can be identified in the human
outer retina.35 The first band is the innermost and
the least intense of the four hyper-reflective bands,
which is thought to originate from the external limit-
ing membrane (ELM).36 The second band is now re-
ferred to as the EZ.6 The histological correlation of the
third band is still debated as it has been attributed to
the cone outer segment tips,37 Verhoeff’s mem-
brane35,38 or as the intermediate line but is referred
to as the interdigitation zone.39 The fourth band is
thought to represent the RPE with contribution from
both Bruch’s membrane and the choriocapillaris.40

Origin and significance of the ellipsoid zone

The second hyper-reflective band has been tradition-
ally ascribed to the inner/outer segment junction of
the photoreceptors.41 However, recent studies
suggest that this band is anatomically correlated with
the photoreceptor inner segment ellipsoid (ISe)1,7

and is referred to in the international nomenclature
consensus as the EZ.6 The photoreceptor ISe has a
high refractive index, leading to increased back-
scattering of light that translates to the bright appear-
ance of the EZ.42–45 The photoreceptor ISe is densely
packed with mitochondria and is thus important for
the photoreceptor health and function. Hence, the
ability to link a signal from this band with a diseased
state would be interesting and suggestive of mecha-
nisms at play in disease causation.

Using adaptive optics, Jonnal et al.46 argued that
the EZ is both too thick and proximally located to
be generated by the ellipsoids of the inner segments.
However, only the foveal cone was imaged in that
study, which may explain the inconsistent findings
with the earlier reports. Although the exact anatomi-
cal correlation of the EZ remains disputed, its roles in
the clinic and in research are still relevant because
change in its integrity and intensity has been correlated
with different retinal disease processes.9,21,40,47–49

Changes in the ellipsoid zone in different
disease processes

Changes in the EZ are determined based upon its
integrity or intensity. The integrity of the EZ can be
characterized broadly into three categories of presence,
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disruption or absence. More recently, a quantitative
approach of determining the relative intensity of the
EZ has been advocated. The relative intensity of the
OCT EZ can be expressed as a ratios of the EZ to the
ELM.10–12 The intensity of the ELM layer is used as
the reference value to control for the variation in the
brightness of different OCT scans because the ELM is
a non-neural layer, does not alter its intensity with
age or the stage of degeneration and as it has a consis-
tent intensity across the retina.10 The inner nuclear
layer (INL) has also been investigated for the use as a
reference layer because it has a larger area compared
with the ELM, which could have made the manual
measurements of the intensity easier. At present,
the ability to determine the intensity of the EZ nor
the ratio with the ELM is not automated so that time-
consuming manual examination is required.10–12,17

The EZ integrity and intensity have been studied in
various retinal conditions.

Retinal and macular degenerative
conditions

Changes in EZ intensity have been reported in retinal
degenerative conditions. Hood et al.17 investigated
the intensity of the EZ in cone dystrophy, a condition
known to have reduced number of functioning cones,
and found that the disease produced a less intense
signal from the EZ compared with healthy controls.
Sundaram et al.12 investigated the EZ intensity in
patients with achromatopsia and its implication in
establishing measures to determine patients suitable
for gene therapy. They found that those without any
disruption in the EZ, the mean intensity ratio of the
EZ was significantly lower in achromatopsia com-
pared with controls, but there was no correlation
between intensity and retinal sensitivity measured

by microperimetry.12 Furthermore, a case report of
peripheral cone dystrophy has found that the
reduction in the OCT EZ intensity is to be correlated
with the reduction in cone photoreceptors in the
corresponding area imagined by adaptive optics.50

In our own studies, we found that patients with
the early stages of AMD exhibit reduced relative in-
tensity of the EZ when compared with healthy con-
trols across different retinal eccentricities, except at
the fovea.11 We have also observed a correlation be-
tween the reduction in relative intensity of the EZ
with delayed multifocal electroretinogram (mfERG)
implicit time, but not with the mfERG amplitude.10

In a separate study in eyes with intermediate AMD,
we observed the recovery of the EZ integrity follow-
ing drusen regression without evidence of nascent
geographic atrophy (nGA). The recovery of the EZ
integrity was associated with the improvement in
retinal function as measured by the mfERG (Fig. 2).

Interestingly, the age-related maculopathy suscep-
tibility 2 (ARMS2) gene, implicated in AMD, is con-
sidered by some to have a role in mitochondrial
homeostasis, impacting upon the cellular apoptosis
pathway of the cones, although there is not universal
agreement on the role of this gene.51 A decrease in
the EZ intensity may be reflecting the reduction in
healthy or functional mitochondria in the photore-
ceptor inner segment, which could translate to abnor-
mal photoreceptor function. Therefore, a quick retinal
scan with OCT could potentially detect AMD pa-
tients with ARMS2 genotypes and provide a surrogate
measure of retinal function.

Disruption of EZ has also been reported in AMD
eyes with reticular pseudodrusen (RPD)14,20,52 and
it has been shown to be associated with the reduction
of cone density.14 In a longitudinal study in eyes
with RPD, Spaide et al. found that eyes progressed

Figure 1. An example of a spectral domain optical coherence tomography of a normal eye.
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to atrophy were associated with loss of photoreceptor
length, disruption of EZ band or decrease EZ inten-
sity, and visual loss.53 In eyes with geographic
atrophy (GA) secondary to AMD, it has been demon-
strated that retinal areas with disrupted EZ have a
greater risk for progressing to dense scotoma
compared with areas with intact EZ.54 Several
retrospective studies have investigated the EZ changes
in patients treated for neovascular AMD,55,56 with the
presence of the EZ associated with better final visual
acuity following photodynamic therapy than in those
where the zone was missing.57

Inflammatory diseases

Disruption of the EZ has been observed (Fig. 3) in pa-
tients with multiple evanescent white dot syndrome
(MEWDS).9,58,59 Hashimoto et al.59 described diffuse
disruption of the EZ in the acute stage, with restora-
tion of the EZ in the intermediate stage and its
complete restoration in the late stage of MEWDS.
The disappearance of the EZ is initially thought to
be related to the structural change in the photorecep-
tor secondary to disease process, which alters its re-
fractive property and makes it invisible on OCT.
However, it is noted that the band reappears as the dis-
ease evolves suggesting perhaps that the disruption is
likely a reflection of altered refractive characteristics,

which resolve as the inflammation resolves, rather
than a permanent loss of cells or their function.9

Other inflammatory conditions associated with
changes in EZ integrity include acute posterior multi-
focal placoid pigment epitheliopathy (APMPPE),
punctate inner choroidopathy (PIC) and acute zonal
occult outer retinopathy (AZOOR). In APMPPE,
the EZ is often disrupted in the acute stage of the
disease,60 but EZ disruption can also be seen after
healing in areas that initially appeared normal on
OCT.61 EZ disruption is also observed in PIC,62,63

and it is usually associated with the focal elevation
of the RPE.64 In AZOOR, the EZ is often irregular or
disrupted at the lesion sites or retinal areas with ab-
normal mfERG.65,66 Recovery of the EZ integrity has
also been reported in some AZOOR patients when
retinal function and enlarged blind spot improved.67

Other retinal conditions

The integrity of the EZ has been found to be an impor-
tant indicator of visual outcomes,68 and its normal
appearance is associated with better post-operative
visual acuity in idiopathicmacular hole,22,69 in epiretinal
membrane70–72 and in retinal detachment.73–75 Other
retinal diseases, where the integrity of the EZ was
found to correlate with visual outcome, include
macular telangiectasia,76 retinal vein occlusion77,78

and central serous chorioretinopathy.79,80

Figure 2. Optical coherence tomography (OCT) images and multifocal electroretinogram (mfERG) responses from an intermediate age-
related macular degeneration eye. OCT scans show drusen regression and change in the ellipsoid zone (EZ) integrity at the 12-month
visit and the recovery of the EZ integrity at the 24-month visit. The recovery of the EZ integrity is associated with the improvement in
the mfERG implicit time, particularly at the central and temporal retina.
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The association between the EZ integrity and visual
outcome has also been demonstrated in diabetic macu-
lar oedema. The extent of the EZ disruption was found
to be a predictor of visual outcome in diabetic macular
oedema.81,82 It has been shown in a retrospective inter-
ventional study that the shorter length of disruption
in the EZ correlated with better visual outcome in
patients with diabetic macular oedema treated with
intravitreal triamcinolone.83 In a study of diabetic
retinopathy where there is angiographic evidence of
macular non-perfusion, the authors have reported
corresponding SD-OCT demonstrating both disrup-
tion of integrity and reduced intensity of the EZ.84

Changes in EZ integrity have also been demon-
strated in ocular infectious conditions such as
syphilis85 and dengue fever-associated maculopathy.86

En-face OCT imaging techniques

En-face OCT imaging was first reported in literature
in 1997.87 Wanek et al.88 have identified the EZ en-
face images and demonstrated non-uniform variation
in texture, which the authors attributed to limited
fixation stability of the test subject. Rosenfeld et al.
reported a novel use of en-face image processing al-
gorithm for identifying areas at risk of GA progres-
sion, in their study, darker areas on the en-face slab
images of the EZ correlated with areas that developed
GA, suggesting that EZ disruption may represent an
early defect preceding GA.89 Although to date, there
is no reported study investigating the change in the
EZ intensity on en-face OCT, a volumetric analysis
of the EZ or a measure of overall intensity, might
have the potential to become a surrogate measure of
disease severity in AMD and other retinal conditions.

Current limitations and future direction

The advancement in OCT technology has resulted in
improved scan resolution, speed and signal-to-noise

ratio, which has translated into better delineation of
subtle changes of retinal ultrastructures secondary
to disease pathology. As this field is ever evolving
because of new innovation in imaging techniques,
clinicians who utilize OCT in their daily practice for
clinical decision-makings must also be aware of the
current limitation of this relatively new technology.

Although SD-OCT is capable of resolving the dif-
ferent layers of the retina, it lacks the lateral resolu-
tion to resolve cellular details of each layer.46 Newly
emerged imaging techniques such as adaptive optics
have been shown to combine both cellular lateral
resolution and depth resolution offered by the con-
ventional SD-OCT.35,41,90 Consequently, previously
proposed anatomical correlates are being questioned
in newer studies, and as such, we should remain
open to the need to re-evaluate our current assump-
tions on anatomical correlates to the bands and the
zones seen on OCT.

Commercially available OCTs do not display the
raw linear data because of the large amount of back-
scattered light captured in generating the native
images. Final images are usually produced from
transformation of the linear OCT data through combi-
nation of logarithmic or root transformation.91 Fur-
thermore, the SD-OCT final output image is both
dependent on and limited by the instrument’s ability
to resolve physical structural details, also known as
the point spread function of the instrument. The axial
dimension of an imaged object is therefore dictated
by the axial resolution of the instrument itself. For
example, an infinitely thin hypothetical reflector
when imaged by an OCT would have appeared as
thick as the point spread function of the instrument,91

and in case of the Spectralis SD-OCT, it would
appear as a hyper-reflective band measuring at
7μm. Therefore, the final OCT images may misrepre-
sent actual difference in reflectivity.1,12

There are always further improvements in imag-
ing, such that now with swept source OCT, we can

Figure 3. Fundus autofluorescence and optical coherence tomography (OCT) images of an eye with multiple evanescent white dot
syndrome. The OCT image shows the disruption of the ellipsoid zone (arrows) at the lesion.
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visualize deep structures in the posterior pole such
as the choroid and therefore allow the ability to
assess differences in choroidal structure with
disease.24,92–94 More recently, there are devices that
combine OCT imaging with angiography allowing
blood vessels and flow to be determined without
the need for formal fluorescein and indocyanine
green angiography. With ever evolving techniques,
we are sure to learn more about the ultrastructure
and vasculature of the retina and choroid, and their
changes in different eye conditions.

CONCLUSION

The second hyper-reflective band on SD-OCT is
currently referred as the EZ. Although there is still a
lack of a consensus on the exact anatomical correlate
of the EZ, the integrity and intensity of the EZ has
been shown to be associated with the visual function
and is an important indicator of visual outcomes in
many retinal conditions. With a relatively quick and
highly reproducible OCT image acquisition, the
integrity and intensity of the EZ has the potential
for assessing the health of the outer retina in clinical
and research settings.

Method of literature search

References for this review were identified through a
comprehensive literature search of the following
electronic databases: MEDLINE, PubMed and Science
Direct. In addition, articles, textbooks and thesis
thought to be relevant were also selected from review
of the bibliographies of those articles generated from
the aforementioned search. The following keywords
and combinations of thesewordswere used in compil-
ing the search: ‘optical coherence tomography’, ‘second
hyper-reflective band’, ‘IS/OS junction’, ‘inner
segment ellipsoid’, ‘integrity’ and ‘intensity’.
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