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Abstract

The retina and the choroid are two important structures of the eye and on which the

quality of eye sight depends. They have many tissue layers which are very important for

monitoring the health and the progression of the eye disease from an early stage. These

layers can be visualised using Optical Coherence Tomography (OCT) imaging. The ab-

normalities in these layers are indications of several eye diseases that can lead to blind-

ness, such as Diabetic Macular Edema (DME), Age-related Macular Degeneration (AMD)

and Glaucoma. If the retina and the choroid are damaged there is little chance to recover

normal sight. Moreover, any damage in them will lead to blindness if no or late treatment

is administered. With eye diseases, early detection and treatment are more effective and

cheaper. Biomarkers extracted from these tissue layers, such as changes in thickness

of the layers, will note the presence of abnormalities called pathologies such as drusen

and hyper-reflective intra-retinal spots, and are very effective in the early detection and

monitoring the progression of eye disease. Large scale and reliable biomarker extraction

by manual grading for early detection is infeasible and prone to error due to subjective

bias and are also cost ineffective. Automatic biomarker extraction is the best solution.

However, OCT image analysis for extracting biomarkers is very challenging because of

noisy images, low contrast, extremely thin retinal layers, the presence of pathologies and

complex anatomical structures such as the optic disc and macula. In this thesis, a robust,

efficient and accurate automated 3D segmentation algorithm for OCT images is proposed

for the retinal tissue layers and the choroid, thus overcoming those challenges. By map-

ping OCT image segmentation problem as a graph problem, we converted the detection

of layer boundaries to the problem of finding the shortest paths in the mapped graph.

The proposed method exploits layer-oriented small regions of interest, edge pixels from
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canny edge detections as nodes of the graph, and incorporates prior knowledge of the

structures into edge weight computation for finding the shortest path using Dijkstra’s

shortest path algorithm as a boundary of the layers. Using this segmentation scheme, we

were able to segment all the retinal and choroid tissue layers very accurately and extract

eight novel biomarkers such as attenuation of the retinal nerve fibre layer, relative inten-

sity of the ellipsoid zone, thickness of the retinal layers, and volume of pathologies i.e.

drusen, etc. In addition, we demonstrated that using these biomarkers provides a very

accurate (98%) classification model for classifying eye patients into those with normal,

DME and AMD diseases which can be built using a Random Forest classifier.

The proposed segmentation method and classification method have been evaluated on

several datasets collected locally at the Center for Eye Research Australia and from the

public domain. In total, the dataset contains 56 patients for the evaluation of the segmen-

tation algorithms and 72 patients for the classification model. The method developed

from this study has shown high accuracy for all layers of the retina and the choroid over

eight state-of-the-art methods. The root means square error between manually delin-

eated and automatically segmented boundaries is as low as 0.01 pixels. The quantifica-

tion of biomarkers has also shown a low margin of error from the manually quantified

values. Furthermore, the classification model has shown more than 98% accuracy, which

outperformed four state-of-the-art methods with an area under the receiver operating

characteristic curve (AUC) of 0.99. The classification model can also be used in the early

detection of diseases which allows significant prevention of blindness as well as provid-

ing a score/index for the condition or prediction of the eye diseases. In this thesis, we

have also developed a fully automated prototype system, OCTInspector, for OCT image

analysis using these proposed algorithms and methods.
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Table 1: List of abbreviations in lexicographical order.

AD Anisotropic Diffusion ICG IndoCyanine Green
AMD Age-related Macular Degeneration ILM Internal Limiting Membrane
aprxONL the approximate locations of ONL INL Inner Nuclear Layer
aprxRNFL the approximate locations of RNFL IPL Inner Plexiform Layer
aprxRPE the approximate locations of RPE IZ Interdigitation Zone

aprxTRL the approximate locations of Three
Reference Layers LBP Local Binary Pattern

AUC An Area Under the receiver operator
characteristics Curve

MDB Minimum Distance Band

BM Bruch’s membrane MUE Mean Unsigned Error
BMO Bruch Membrane Opening MZ Myoid Zone
BMO-
MRW

Bruch Membrane Opening Minimum
Rim Width

nGA nascent Geographic Atrophy

BoW Bag-of-word OCT Optical Coherence Tomography
Cc Choriocapillaris OCV Outer Choroidal Vessel
CED Canny Edge Detection ONH Optic Nerve Head
CERA Centre for Eye Research Australia ONL Outer Nuclear Layer
CFP Colour Fundus Photography OPL Outer Plexiform Layer
CNV Choroidal Neovascularization OSL Outer Segment Layer
CSI Choroid Sclera Interface PCA Principle Component Analysis
CTh Choroidal Thickness PL Photoreceptor Layer

CV Choroidal Vessel PS-OCT
Polarization-Sensitive Optical Coher-
ence Tomography

CWS Cotton Wool Spots RBC
the complex of the RPE/ BM/ Chorio-
capillaris)

DC Dice Coefficient RMSE Root Mean Square Error
DIN Depth-based Intensity Normalization RNFL Retinal Nerve Fiber Layer
DME Diabetic Macular Edema ROI Region Of Interest
DR Diabetic retinopathy RPE Retinal pigment epithelium
EDI-
OCT

Enhanced Depth Imaging Optical Co-
herence Tomography SA Simulated Annealing

ELM External Limiting Membrane Sch Suprachoroid

EZ Ellipsoid Zone SD-OCT
Spectral Domain Optical Coherence
Tomography

FA Fluorescein Angiography SEAD
Symptomatic Exudate-Associated De-
rangement

GA Geographic Atrophy SLO Scanning Laser Ophthalmoscopy
GCL Ganglion Cell Layer SR Stable Reference

GT Ground Truth SS-OCT
Swept Source Optical Coherence To-
mography

HRC Hyper-Reflective Complex TD-OCT
Time Domain Optical Coherence To-
mography

HRS Hyper-Reflective intra-retinal Spots TRL Three Reference Layers
ICC Interclass Correlation Coefficient VMT vitreomacular traction
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Chapter 1

Introduction

Life expectancy is increasing and vision needs to be preserved to maintain a good

quality of life for individuals. Consequently, vision loss is an alarming issue for the age-

ing population. The top three common eye diseases which result in irreversible vision

loss are Diabetic Macular Edema (DME), Age-related Macular Degeneration (AMD) and

glaucoma. These diseases often remain undiagnosed or are only diagnosed late and can

cause permanent loss of vision which is impossible to reverse [7, 8, 12, 13]. DME mainly

affects diabetic patients and the prevalent cases of DME are expected to grow to over

300 million (globally) within the next few years [14]. AMD and glaucoma affect mainly

aged people. AMD affects nearly 35% of adults who are over 80 years of age; glaucoma

accounts for 9-12% of all cases of blindness. The number of AMD and glaucoma pa-

tients are expected to increase by approximately 150% over the next few years due to

an increase in the ageing population [7, 13]. As a consequence, a large proportion of the

world’s health budget needs to be spent on screening, diagnosis and treatment of these

diseases. The costs for individuals suffering from such diseases can be enormous. There-

fore, early detection and treatment of those diseases can save vision, money and provide

a better quality of life for individuals.

Our visual system involves both the eyes and brain. The eye has many parts or struc-

tures such as lens, retina, choroid, sclera. The light comes through the lens of the eye

and falls onto the retina which converts the light into an electrical signal for passing to

the brain that processes the signal to make sense to us. The choroid is located under the

retina and its main purposes are to provide oxygen, nutrition to the retina and to absorb
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2 Introduction

excess light to protect the retina. The retina has many substructures such as optic disc,

blood vessels (artery and vein), macula as shown in colour fundus image, Fig. 1.1. Colour

fundus image can only show the surface of the retina and can provide a detailed image

of the retina substructures’ surface. The retina has ten different layers of tissue as shown

in Fig. 1.2. The functions of these layers are discussed in Chapter 2 (Section 2.2.1.4).

The cross sectional view of these tissue layers can be observed using Optical Coherence

Tomography (OCT) imaging: each slice is known as a B-scan (see Fig 1.2) [7]. High reso-

lution and the speed of the OCT technology also allow constructing a 3-Dimensional (3D)

view of the retina by capturing and combining multiple OCT images. Since the choroid

is located under the retina, it is not as easy to observe from the outside as the retina.

However, advances in OCT imaging technology allow capturing the cross-section of not

only retinal tissue layers but also the choroid as shown in Fig. 1.2. OCT imaging can cap-

ture the retina and the choroid structures in detail and can extract biomarkers from these

structures for understanding and monitoring the progression of eye diseases. Ophthal-

mologists have found some morphological changes such as variation in layers’ thickness

in the retina and the choroid and the presence of cysts (a risk factor for DME), and drusen

(a risk factor for AMD) due to these eye diseases before there is any noticeable deteriora-

tion in vision experienced by the individual [15–18]. The morphological changes noticed

for eye diseases are listed in Table 1.1.

Research studies associated with understanding the progression of the diseases re-

quired analyses of large numbers of OCT images and quantifying many potential biomark-

ers. Traditional methods of quantifying biomarkers involving humans are no longer fea-

sible or cost-effective on large-scale datasets as high-resolution images from OCT imag-

ing create a huge volume of images. For example, it is possible to collect up to 400 OCT

images per person for both eyes every 3 months [24]. Moreover, human grading is prone

to inaccuracy, more grading variability and subjective bias. On the other hand, automatic

grading will allow more consistent and effective measurements on a very large scale and

consequently may give an opportunity to gain a new reliable insight into many eye dis-

eases [7, 8]. This has given impetus to building automatic tools for segmentation of the

retinal layer from OCT images since 1995. Some segmentation methods have been pro-
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Figure 1.1: A surface image of the retina using Colour Fundus Photography with outlin-
ing the major components/substructures of the retina.

Figure 1.2: A cross section of the retina and the choroid using Optical Coherence Tomog-
raphy (OCT) imaging, slice is known as B-scan. Outlining the layers of the retina and the
choroid in the image. Details of these layers are discussed in Chapter 2 (section 2.2.1.4).

posed to enhance the clinical benefit of the OCT such as detecting and quantifying the

pathologies and layer thicknesses. However, none of the methods are capable of seg-

menting layers with good accuracy in all conditions due to different challenges found in
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Table 1.1: Association of the biomarkers with eye diseases.

Biomarkers Association of the biomarkers with the eye disease

Layer Thickness

RNFL, GCL, and IPL layers of the retina were significantly thin-
ner in eyes with glaucoma - approximately 20% less width than
age-matched normal eyes (p < 0.001) [17]. Mean retinal thickness
was reduced significantly in early AMD patients, approximately 10%
(p = 0.008) than age-matched normal eyes [19].

Quantification
value of Hyper-
Reflective intra-
retinal Spots
(HRS)

The presence of HRS is a characteristic finding of the various stages of
DME and is a key risk factor for the development of more advanced
stages of DME [18].

Quantification
value of Drusen

The presence of large macular drusen ( 125 µm) is a characteristic find-
ing of the early stages of AMD and is a key risk factor for the devel-
opment of more advanced stages [20].

Cup-disc ratio A cup-disc ratio more than 0.5 is a risk indicator of glaucoma [15].
Bruch’s mem-
brane opening
- minimum rim
width (BMO-
MRW)

The visual sensitivity of glaucoma patients is significantly correlated
to the BMO-MRW (r = 0.32, p < 0.001), which has a higher corre-
lation than RNFL Thickness [21]. BMO-MRW in normal patients is
307± 84.3 µm whereas early glaucoma patients have 211 ± 60.5 µm
[22].

Minimum dis-
tance Band
(MDB)

The correlation coefficient between the MDB and cup-disc ratio are
−0.88 and −0.56 for MDB value and area respectively with p < 0.05
which means MDB is highly correlated to glaucoma like cup-disc ra-
tio [12].

Attenuation Co-
efficient of the
RNFL

The severity label of glaucoma increases with decreasing the RNFL’s
attenuation coefficient [23]. Schoot et al. [23] found a significant
structure-function relationship between the attenuation coefficient
and the visual field’s mean defect.

Reflectivity value
of EZ layer

Early AMD patients have an average value of 1.73, and the control
patients have an average value of 2.27 [16].

RNFL: Retinal Nerve Fiber Layer; GCL: Ganglion Cell Layer; IPL: Inner Plexiform Layer; EZ: Ellipsoid Zone

OCT images. Such challenges include: unpredictable changes in the retina and choroid

due to pathologies and anatomical structures such as optic disc, macula; inconsistent

contrasts in the homogeneous areas due to noise and imaging technology. Considering

these essential requirements, in this study, an automatic 3D segmentation method for the

retinal layers and the choroid from OCT images is proposed. Since OCT technology can

show morphological changes of the retina and the choroid due to eye diseases, it is possi-

ble to design a classification model of eye diseases and its severity using this morphologi-
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cal information. There are some methods proposed for the classification of diseases based

on texture analysis of OCT images [1,25]. There is only one method available for the clas-

sification of diseases from clinically defined morphological changes, where biomarkers

are extracted manually and results show excellent accuracy [26]. Therefore, in this study,

novel methods have been developed for detecting pathologies such as drusen and ex-

tracting biomarkers such as changes of the layer thickness. Using these clinically derived

biomarkers automatically, a classification model has been designed for identifying eye

diseases that showed excellent accuracy.

1.1 Research objectives

This research aims to develop an automatic segmentation algorithm for the retinal layers

and the choroid which can be utilised to quantify clinically derived biomarkers. Further-

more, this project aims to quantify pathologies, such as inner retinal lesion (e.g. HRS)

and outer retinal lesion (e.g. drusen). In particular, this research addresses the follow-

ing problems: 1) automating 3D segmentation of the retinal layer and the choroid; 2)

quantifying biomarker related to DME, AMD, and glaucoma, and 3) developing a reti-

nal OCT-based classification model for classifying the eye diseases into DME, AMD and

normal.

1.1.1 Automated 3D Segmentation algorithm for the retinal layer and the choroid

The main goal of this study is to develop an automatic method for segmenting the retinal

layers and the choroid from OCT images. An automated method will help ophthalmolo-

gists to conduct large-scale early detection and to monitor eye diseases. Manual segmen-

tation of the retinal layers and the choroid is very expensive and time-consuming because

OCT technology provides high-resolution images with a large number of slices (B-scans).

Just one individual may have 400 OCT images for both eyes. Moreover, the quality of

the manual segmentation is prone to inaccuracy, higher grading variability, and subjec-

tive bias and fatigue. Therefore, it is highly desirable to develop an accurate and robust

automatic method for the segmentation of the retinal layers, the choroid and pathologies
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of the retina as well as to provide their quantified values. However, that is a challenging

task due to the uneven anatomical structure of the retina, unpredictable changes due to

pathologies and inconsistent contrasts in homogeneous areas because of noise [8]. In the

last two decades, a large number of studies have been done to develop an automatic tool

to resolve this problem. However, none of the methods has performed well for the retinal

layer segmentation as the accuracy of these methods is highly dependent on dataset due

to the presence of various pathologies. Therefore, we need to develop an improved au-

tomatic segmentation method for retinal layers and choroid that can work reliably under

various disease conditions and eye anatomical structures.

OCT images are contaminated by additive and speckle noises [27]. As a result, a

homogeneous area can show uneven contrasts. Moreover, the intensity values decrease

deterministically with growing imaging depth across layers due to the absorption and

scattering of light in the retina and the choroid tissues which make detecting the choroid

a challenging task. The structure of the retina is also different in the different regions of

the retina such as optic disc and macula, as shown in Fig. 1.1 and also becomes more

unpredictable in the presence of the pathologies such as geographic atrophy (GA) and

drusen [8]. The presence of varying blood vessel sizes makes an unpredictable pattern

in the Optic Nerve Head (ONH) region, another name of optic disc [8]. These properties

make it difficult to segment ONH region. Additionally, the choroid differs largely from

the retina, where large blood vessels and the structure of the choroid make an uneven

pattern throughout the region. Thus, developing a robust method for segmenting the

retinal layer and the choroid to handle those difficulties is a big challenge. Therefore,

an automatic and robust method is required for handling the noise, intensity inconsis-

tencies, different anatomical regions (the presence/absence of the ONH and/or macula),

unpredictable changes due to the presence of pathologies, etc. to find accurate positions

of the retinal layers and the choroid.

1.1.2 Biomarkers quantification

The goal of the retinal layer automatic segmentation is to extract biomarkers for the pre-

diction of eye diseases. Such an automated system would enable large scale studies. It
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can also help to establish new biomarkers by analysing their correlation with eye dis-

eases. To extract reliable biomarkers, a segmentation method should be able to detect the

pathologies with high accuracy. That detection is very challenging due to unpredictable

positions, shapes, and sizes of the pathologies. Biomarker extraction also involves all ten

retinal layers that need to be detected properly. The retinal layers’ detection in the dis-

eased eye is more challenging due to unpredictable thickness variations in the layers and

loss of the retinal layers. Consequently, thin layers become more challenging to detect

accurately. Therefore, this thesis investigates the development of robust algorithms for

accurate extraction of biomarkers.

1.1.3 Development of classification model for eye diseases

Prediction of eye diseases from OCT images is an important problem. It can help early

detection of eye diseases and be able to calibrate the severity of the disease. Consequently,

many research schemes have been suggested for designing a classification model. Most

methods classify the diseases based on the texture of the OCT images. Since textures

could misguide the model due to changes of the dataset and the presence of multi-type

pathologies and noise, they are prone to error and thus a model based on the clinically-

driven parameters is required [28]. To produce a robust classification method for an eye

disease, we need to address the following: (a) accurate measurement of biomarkers; (b)

selection of appropriate machine-learning algorithm, and (c) computation of the optimal

hyper-parameters for the chosen machine-learning algorithms.

1.2 Thesis contributions

The contributions of this thesis are: a) To develop an efficient and accurate automatic

method of segmenting all ten retinal layers and the choroid; b) Quantifying the biomark-

ers including segmenting the pathologies; and c) Classification of eye diseases; with ad-

dressing three important research problems as mentioned in the previous section.

In addition to the above contributions, we have developed a fully automated soft-

ware system for OCT image segmentation, biomarkers extraction and classification. The
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system is designed to manually correct any part of the automated segmentation. This

functionality helps the system to continually improve its accuracy; corrected images can

be used in the learning process. The details of each contribution are presented in the

following subsections.

1.2.1 Automated 3D Segmentation algorithm for the retinal layer and the choroid

A robust and effective automatic method has been proposed for segmentation of the reti-

nal layers and the choroid from the Spectral Domain Optical Coherence Tomography

(SD-OCT) images or higher-resolution OCT images such as Enhanced Depth Imaging

OCT (EDI-OCT) and Swept Source OCT (SS-OCT). The proposed method seamlessly

works in the presence or absence of the ONH and/or macula. The proposed method

also works in the presence or absence of pathologies and morphological changes due to

disease. The segmentation of boundaries is achieved by modelling the problem as the

shortest path graph problem. The edge pixels found from a Canny Edge Detection Algo-

rithm form the nodes. The slope similarity to a reference line and node’s non-associativity

(pixels not satisfying associated layer property) to the layer along spatial distances of

the nodes are used for the computation of the graph edge weight. The edge weight is

computed by addressing pathologies, macula and ONH related structural change of the

retina. Since the choroid is considerably different from the retina, where large blood

vessels and the structure of the choroid make the region uneven in the distribution of

intensity, the approach of detecting retinal layers is not suitable for the Choroid-Sclera

Interface (CSI) - the outer boundary of the choroid. A novel method has been proposed

to normalise the intensity of the choroid region for providing an even distribution of

the background. Finally, the CSI boundary is detected using a similar segmentation algo-

rithm that is used for retinal layers; however, edge weights incorporate the effect of imag-

ing technology and the anatomy of the choroid. Moreover, the tissues of the retina and

the choroid are continuous in adjacent B-scans when the distance between the adjacent

scans are very close. Therefore, very small changes of the boundaries from one B-scan

to an adjacent B-scan are expected. This information helps to obtain correct boundaries

where 2D automatic segmentation fails due to the presence of noise or various tissue
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structures or pathologies. The method first detects the boundaries sequentially in the

order of high contrast and the maximum gradient intensity to low contrast and mini-

mum gradient intensity of the boundaries. This approach helps detect the low-contrast

boundaries in a small Region of Interest (ROI), since ROI is defined using the already

detected boundaries and adjacent B-scans. The reduction of the ROI helps to improve

the accuracy and efficiency of the detection even in the presence of pathologies. Due to

the differences among the patterns of ONH boundaries, the top boundary of the retina is

detected by utilising approximate ONH region in the edge weight. Following this, ONH

is detected by using the top boundary and three patterns (the absence of layers, dissimi-

lar layer positions, and intensity pattern) of the ONH in the SD-OCT image. This method

is evaluated using five datasets from four sources including two public datasets, which

consists of 56 subjects where 55 are macula-centred volumes and one is ONH-centred SD-

OCT. In those datasets, 36 subjects are AMD and glaucoma patients, and 20 subjects are

healthy. Three different graders trace the boundaries for different datasets that serve as a

gold standard for the automatic segmentation evaluation. In total, eight state-of-the-art

methods (six methods are for retinal layer segmentation while the others are for the CSI

segmentation) and the proposed method has been used to compare the accuracy of the

automatic methods. The proposed method has also been shown to outperform the other

eight state-of-the-art methods on every dataset.

1.2.2 Biomarkers quantification

In this study, a novel framework has also been proposed for measuring biomarkers that

are already defined by ophthalmologists for retinal structures using SD-OCT images. A

total of eight biomarkers are of interest to ophthalmologists. These are: retinal structural

thickness; three morphological parameters of ONH; the volume of the pathologically al-

tered tissue (lesion of the inner and outer retina); the relative intensity of the Ellipsoid

Zone, and attenuation coefficients of the Retinal Nerve Fibre Layer. These are very sig-

nificant for early screening of glaucoma, DME and AMD. The proposed 3D segmentation

method delivers its primary goal of detecting the layers in any circumstances - for exam-

ple, in the presence of pathologies or distorted layers due to disease. Furthermore, an
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automated method for detecting pathologies (such as drusen and HRS) using the thick-

ness of the layers and intensity profiling has been developed. The same protocol has

been followed as defined by the previous studies that introduced these biomarkers when

computing them on SD-OCT images that resulted in low margins of error between man-

ual and automatic grading of the biomarkers. Two AMD patients (having a total of 98

B-scans) have been used for the evaluation of the quantified values of the biomarkers;

one glaucoma patient (total 200 B-scans) and one DME patient (total 97 B-scans). The

automatic method achieved F1-scores of 0.79 and 0.70 for a HRS of the inner retina and

drusen respectively, using manual grading as a gold standard. The mean error of the

biomarkers’ quantified value is as low as 0.06.

1.2.3 Development of classification model for eye diseases

In this study, the first automatic method of clinically-derived features-based classification

method of eye diseased patients from SD-OCT images has been proposed. The patients

are classified into DME, AMD and normal. Total ten features have been used for develop-

ing the model of eye-disease classification. Ten features are comprised with the thickness

of the retina and retinal layers, the volume of the pathologies such as drusen and HRS,

curviness of the boundaries of the retinal layers. The classification model is then designed

based on Random Forest. Experimental results with two datasets of 45 (a public dataset,

15 DME, 15 AMD and 15 normal) and 72 (combining the public and local datasets, 15

DME, 28 AMD and 29 normal) show the SD-OCT volumes have very good classification

accuracy. The proposed method has achieved a high level of accuracy compared to the

existing four state-of-the-art methods.

1.2.4 OCTInspector: A Complete Automated System for OCT Image Analysis

Although the proposed automatic segmentation shows excellent performance in seg-

menting the retinal layers and choroid, it can occasionally fail in some places and require

manual correction. Therefore, we have provided a very efficient manual editing facility.

This uses the same graph representation as the automatic method but reduces the ROI
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by the use of mouse pointer and clicks. The manual correction is made consistent by the

use of nearby edge-pixels instead of the exact position of the user’s clicks. The system

also provides an option to visualise any set of combination of the layers, sub-structures

and pathologies in 3D as well as in enface image (frontal sections of retinal OCT scans,

also called C-scan OCT). It also computes selected biomarkers that have been proposed

in this thesis.

1.3 Thesis organisation

The rest of this thesis is organised as follows.

Chapter 2: Background

This chapter presents the background knowledge of the biological properties of the

retina and the choroid. Following that, the major pathologies and disease manifestation

in the retina and the choroid are discussed. The imaging technologies of the retina and

the choroid are briefly presented. We also discuss various OCT technologies and imaging

procedures. Finally, a literature review on the existing computer-aided segmentation

methods for the retinal layers, the choroid, and pathologies; and classification model

based on SD-OCT images are presented.

Chapter 3: 2D Segmentation (2DS) Algorithm for the Detection of Retinal Layers

This chapter presents an automatic 2D segmentation (2DS) algorithm of the four sig-

nificant boundaries of the retina that are distorted in the presence of pathologies (such as

drusen) for the macula-centred SD-OCT image. This is the initial work towards devel-

oping the proposed 3D segmentation method. This chapter proposes a noise-reduction

approach using anisotropic diffusion and Weiner filter. Then, an algorithm for finding

the three reference layer positions approximately using prior knowledge of intensity and

position of them has been proposed. Following that, the procedure of the boundary

detection by constructing graph is discussed. Finally, performance evaluation and com-

parison between automated methods is presented.

Chapter 4: 2D Segmentation (2DS) Algorithm for the Detection of the Choroid-

Sclera Interface
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In this chapter, an automated 2D segmentation (2DS) algorithm of choroid segmenta-

tion from EDI-OCT images is presented. A novel intensity-normalisation technique that

is based on the depth of the choroid is used to equalise the intensity of all non-vessel

pixels in the choroid region. Extension of the 2DS algorithm developed in Chapter 3 for

the CSI is described. This method is tested on 190 B-scans of 10 subjects against manual

segmentation by two expert graders and two state-of-the-art automated methods.

Chapter 5: 3D Segmentation (3DS) Algorithm for the detection of the retinal layers

and the Choroid-Sclera Interface

In this chapter, an automated 3D segmentation (3DS) method of the retinal layers

and the choroid from OCT images is presented. The previously- proposed 2D segmenta-

tion methods have been utilised in the 3D segmentation method. The selection of small

layer-specific regions of interest from adjacent B-scans makes the method efficient, ac-

curate and robust. The method on 250 B-scans from 10 (8 normal and 2 AMD) subjects

has been evaluated by comparing the boundary positions and layer thicknesses marked

by one grader. The performance of the proposed method has been compared with five

state-of-the-art methods and the proposed method showed a significant improvement in

accuracy.

Chapter 6: The Optic Nerve Head Detection and Eight Prominent Biomarkers Ex-

traction

In this chapter, a proposal is made for a unified method of segmenting ONH from

SD-OCT images that allow segmenting the retinal layers seamlessly in ONH or other

regions. Furthermore, an automatic method of quantifying retinal biomarkers after seg-

menting pathologies, such as drusen and HRS, is proposed. Finally, eight clinically-useful

biomarkers of the retinal diseases are computed automatically using a defined protocol

by ophthalmologists. A low margin of error between manual and automatic grading of

the biomarkers is found.

Chapter 7: Classification model of Diseased patients

In this chapter, an automatic method of classification of SD-OCT images for identi-

fication of patients into three different classes (DME, AMD and Normal) is proposed.

This classification model is designed based on ten features using Random Forest. Exper-



1.3 Thesis organisation 13

imental results have been used with two datasets including a public dataset. Classifi-

cation of three classes (DME, AMD and normal) and two classes (diseased and normal)

is performed and compared with state-of-the-art methods and using many classification

methods.

Chapter 8: OCTInspector: A Complete Automated System for OCT Image Analysis

In this chapter, the features and functionality of the OCTInspector are presented.

Chapter 9: Conclusion and Future Research Direction

This chapter summarises the contributions of this thesis and discusses possible areas

for future research.





Chapter 2

Background

This chapter presents background knowledge of this research including the anatomy, the

imaging technology and ending with identifying the research work done on the Optical

Coherence Tomography (OCT) imaging of the retina and the choroid. This chapter is

based on the following publication:

Md Akter Hussain, Alauddin Bhuiyan and Ramamohanarao Kotagiri. ”Progress on

Analysing OCT imaging on Retina and Choroid: A Review”. (To be submitted).

2.1 Introduction

The eye is the main organ of the human visual system. The light enters the eye, the retina

converts it into an electric signal and sends it to the brain for us to make sense [8]. The

retina is thus called an extension of the brain. The choroid protects the retina from the

harm of excess light as well as supplying nutrition [29]. The retina and the choroid are

two structures of the eye and constructed by different tissues. They also have different

substructures, such as an optic disc in the retina that contains nerve cells which trans-

fer the electric signals to the brain. Consequently, many eye diseases and other systemic

diseases such as strokes manifest themselves in the retina, the choroid and their substruc-

tures [30]. Eye diseases include ocular diseases, such as macular degeneration and glau-

coma, which are the most significant causes of blindness in the developed world [7, 13].

Systemic diseases include diabetic retinopathy from diabetes, hypertensive retinopathy

from cardiovascular disease, and multiple sclerosis [14]. Consequently, for the past few

decades, ophthalmologists prefer to diagnose eye diseases by investigating the retinal

15
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tissue structure and the choroid. With proper techniques, the retina is visible through

the pupil and is accessible non-invasively for imaging. Since the choroid is behind the

retina, it is not as easy as the retina to visualise from the outside. However, advances in

imaging technology (e.g. spectral domain optical coherence tomography) permit them

to be viewed with high resolution. Therefore, ophthalmologists are keenly interested in

image-based diagnoses for the eye diseases due to accuracy and the ability to monitor

disease progression.

Many non-invasive techniques are available for two-dimensional (2D) imaging of the

retina such as Colour Fundus Photography (CFP) and InfraRed (IR). [7, 8]. More inva-

sive techniques such as Fluorescein Angiography (FA) and IndoCyanine Green (ICG) an-

giography that require dye injection, are used for imaging functional retina and choroid.

However, advance-imaging technology, Spectral Domain Optical Coherence Tomogra-

phy (SD-OCT) allows non-invasive procedures to obtain proper 3-Dimensional (3D) im-

ages of the retinal tissue structure. Enhanced depth imaging mode of SD-OCT technol-

ogy can image choroid with high resolution [31]. Using biomarkers, for example, are

where tissues or pathologies from the images are used for diagnosis of eye diseases and

their progression. Extracting biomarkers requires segmentation of the OCT image for

identifying tissue structures of the retina, choroid and optic disc. Segmentation can be

performed either manually or automatically. Manual segmentation is generally trust-

worthy due to expert human grading but it is time-consuming, expensive and can be

unreliable for large-scale imaging [7, 8]. The problem becomes even more difficult with

high-resolution images. Also, manual segmentation is prone to inaccuracy, more grading

variability and subjective bias of the graders. As a result, manual segmentation is infea-

sible in practice. These limitations demand automatic segmentation methods. Therefore,

many attempts have been made for segmenting the various structures of the retina and

the choroid [7,8,25]. Automatic segmentation is very cheap and fast and can be employed

for diagnosis and monitoring of progression of eye diseases. However, segmentation of

OCT images is a challenging task due to the presence of noise, pathologies and different

anatomical structures captured in the image. The noise in the images makes for un-

even distribution of the intensity of retinal tissue structures. Diseased eyes have different
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types of pathologies that severely affect the tissue structures. Therefore, researchers have

found the segmentation of the structures is very challenging. Some automatic methods

succeeded in segmenting accurately high quality and fine image but performed poorly in

the diseased eyes where accurate segmentation is most desired. In this chapter, we will

review automatic segmentation of different structures and sub-structures of the retina

and the choroid. In a nutshell, this review will cover the following topics.

• Diseases manifestation in the retina and the choroid

• Imaging based Diagnosis method of the retina and the choroid

• Biomarkers of the retina and the choroid including pathologies from OCT image

• Image analysis techniques based on OCT technology for:

– Detection of retinal and choroidal layers;

– Detection of pathologies;

– Extraction of biomarkers;

– Prediction of eye diseases using classification models.

2.2 Eye, Retina and Choroid

The eye and the brain constitute the human vision system. Figure 2.1 is a cross-section

through the eye showing its major structures [32]. A ray of light passes through the

cornea, the anterior chamber, the pupil, the lens and the vitreous, and is then focused

on the retina [8]. The choroid, the sclera and the retinal pigment epithelium of the retina

absorb any excess light and thus protect the eye from harmful light. The light is focused

on 125 million receptors, called rods and cones, in the photoreceptor layer of the retina

[33]. These receptors are nerve cells and, when the light hits the receptors, they emit

electrical signals which are passed to the brain. The brain processes the signal and makes

sense of the image. In the following subsection, we will look at the retina and the choroid

in detail.
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Figure 2.1: The human eye 1.

1 http://webvision.med.utah.edu/

2.2.1 The retina

The retina is the inner part of the eye and a central entity of vision [33]. The major compo-

nents of the retina are optic disc, macula and blood vessels as shown in Fig. 2.2. Different

types of tissue cells comprise the retina, which is divided into ten layers [34, 35]. The

following section elaborates on these components and the layers of the retina.

2.2.1.1 The optic disc

The optic disc is called a blind spot because it has no light-sensitive rods or cones tissues.

It is also known as Optic Nerve Head (ONH) [15]. In the CFP image, the optic disc is

brightest in intensity as shown in Fig. 2.2. In the OCT image, the optic disc region is

shown as a fall in layers due to the absence of retinal tissues. In the optic disc, there is

a pink neuro-retinal rim containing the nerve fibres and a central pale area (cup) devoid

of nerve fibres, shown in Fig. 2.2 (red circle and cup enclosed rim is by the green circle).
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Figure 2.2: Colour Fundus Photography (CFP) Image of a portion of the retina where
optic disc, cup, macula, artery and vein are shown. The cross-section of the optic disc
and macula (along a green line at the elongated CFP image) displayed at the right of the
corresponding CFP image captured by SD-OCT technology. The 3D view of the optic disc
and macula-centred images illustrated at the top and bottom are constructed by multiple
SD-OCT scans.

This cup-to-disc ratio is a vital biomarker for retinal diseases such as glaucoma [15].

2.2.1.2 The macula

The macula or macula lutea is an oval-shaped highly-pigmented yellow spot near the

centre of the retina [36]. It is the densest area of cones and rods in the retina. The macula

is thus responsible for the central, high-resolution and colour vision as well as contribut-

ing to the highest visual acuity of vision. Any damage to the macula or fovea hampers

the central vision and this disease is called macular degeneration. The macula is repre-

sented as black in the fundus image and a small pit (due to the absence of retinal ganglion

tissues) in the SD-OCT image, shown in Fig. 2.2.

2.2.1.3 The blood vessel

The blood vessels carry oxygen and carbon dioxide. There are two categories of the

carrier, the Artery, the oxygen-rich blood carrier, and the Vein, the carbon dioxide-rich
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blood carrier [37]. Arteries look a brighter red in the fundus photography and narrower

than veins as shown in Fig. 2.2. The thinnest artery and vein, called capillaries, connect

to each other to exchange nutrients and wastes.

2.2.1.4 The retinal tissue layers

The retina is composed of several types of tissue layers for building up the vision system.

The tissues are divided into ten layers [34]. The OCT technology allows visualising the

cross-section and the tissue layers of the retina as shown in Fig. 2.3. A short description

of retinal layers (below) is based on [35, 38].

• Internal Limiting Membrane (ILM): A boundary between the retina and the vitre-

ous body.

• Retinal Nerve Fibre Layer (RNFL): A layer of the axonal fibres from the ganglion

cells.

• Ganglion Cell Layer (GCL): It contains the nuclei of ganglion cells, the axons of

which become the optic nerve fibres that carry the generated signal to the brain.

• Inner Plexiform Layer (IPL): A layer of synapses between ganglion cells and amacrine

cells and the axons of bipolar cells.

• Inner Nuclear Layer (INL): A layer of the cell bodies and nuclei of the integrator

neurones.

• Outer Plexiform Layer (OPL): A layer of the synaptic portions of the rod and cone

cells.

• Outer Nuclear Layer (ONL): A layer of the nuclei of rod and cone cells.

• External Limiting Membrane (ELM): Inter-cellular junctions between photorecep-

tor cells.

• Photoreceptor Layer (PL): A layer of light sensitive element rods and cones that

convert light into electrical signals. Divided into three sub-layers: Myoid Zone

(MZ), Ellipsoid Zone (EZ) and Outer Segment Layer (OSL).
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• Retinal Pigment Epithelium Layer (RPE): A layer of cuboidal cells impregnated

with melanin and responsible for providing essential nutrition to and waste re-

moval from the photoreceptor cells. There is a small band top of the RPE layer

where the interdigitation occur, and termed as the interdigitation zone (IZ).

Figure 2.3: The layers of the retina and the choroid, and the sclera.

2.2.2 The choroid

The choroid is a collection of vascular tissues located behind the retina and before the

sclera. It is also known as choroidea or choroid coat. Recent improvements in OCT tech-

nology such as Enhanced Depth Imaging (EDI)-OCT can capture the cross-section of the

choroid in high resolution as shown in Fig. 2.3. It provides oxygen and metabolic support

to the outer retina and optic nerve. The blood supply of the retina is primarily (∼ 65%)

through the choroid and secondarily (∼ 35%) through the retinal vasculature which lies

on top of the retina. It has melanin, a dark coloured pigment, which helps to absorb

the excess light penetrating the retina [29]. Anatomically, choroidal vessels and stroma

are the two major components of the choroid. The choroidal stroma is comprised of

melanocytes, fibroblasts, immune cells, neurones, and ground substance that contribute

to choroid thickness [39]. The boundary between the choroid and the sclera is called the

Choroid-Sclera Interface (CSI).
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2.2.2.1 The Choroidal Layers

The structure of the choroid is divided into five layers, and they are briefly described in

[39, 40]. Illustration of the layers is provided in Fig. 2.3.

• Bruch’s membrane (BM): The innermost layer of the choroid that separates the

retina and the choroid.

• Choriocapillaris: The Choriocapillaris (Cc) is adjacent to Bruch’s membrane and

is comprised of small fenestrated capillaries (small vessels). These micro-vessels

connect the artery and vein and exchange nutrients and wastes.

• Sattler’s layer (Sat): It is next to Choriocapillaris and is a layer of medium diameter

of blood vessels.

• Haller’s layer (Hal): This is the outermost layer of the choroid and consists of the

larger diameter blood vessels.

• Suprachoroidea (Sch): The suprachoroid is a transitional zone between choroid and

sclera.

2.3 Visualisation of the pathologies in the retina and the choroid

There are many forms of pathologies found in the retina and the choroid [7, 8]. They are

formed due to malfunction of the cells and aging and are responsible for many diseases

mentioned in the earlier section. Figure 2.4 shows different pathologies that can be ob-

served using CFP and OCT images. The quantification of biomarkers such as volume,

shape, and intensity of the pathologies are important for diagnosis of disease and its pro-

gression. A brief description of a few pathologies found in the retina and choroid that

have a strong correlation with the occurrence of eye diseases is presented in the following

subsections.
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2.3.1 Cotton Wool Spots/Soft Exudate

Cotton Wool Spots (CWS) appear as fluffy white patches in CFP images and swollen

RNFL layer in SD-OCT image as shown in Fig. 2.4 (a) [41]. When there is reduced ax-

onal transport within the nerves because of the ischemia (blood blockage), then it causes

damage to the nerve fibres by swelling the surface layer of the retina.

2.3.2 Hard Exudate

Hard exudates are largely made up of extracellular lipid that has leaked from abnormal

retinal capillaries [42]. In CFP images, it looks distinct yellow-white and in SD-OCT,

white at the inner retina as shown in Fig. 2.4 (b).

2.3.3 Drusen

The exchange of nutrients and wastes by the RPE slows down and waste accumulates

under the RPE forming yellowish deposits called drusen as shown in Fig. 2.4 (c) [7].

As the RPE continues to slow its transportation of nutrients and wastes, the overlying

photoreceptors become damaged, up to causing legal blindness.

2.3.4 Geographic Atrophy (GA)

Characterised by sharply delineated areas of severe depigmentation or apparent absence

of the RPE, through which larger choroidal vessels are more easily seen, with a minimum

diameter of 175 µm as shown in Fig. 2.4 (d) [7].

2.3.5 Hyper-Reflective intra-retinal Spots (HRS)

The HRS have been recently hypothesised as different pathogenetic origin by some au-

thors [2]. HRS may represent sub-clinical features of lipoprotein extravasation that act

as precursors of hard exudates. They were not observed on clinical examination, fundus

photography, or fluorescein angiography, due to their small size [2]. However, they were

observed by SD-OCT image as shown with yellow arrow signs in Fig. 2.4 (e). Eyes with
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Diabetic Macular Edema (DME) patients have HRS in the outer retina (53.7%) and in the

inner retina (99.1%).

2.3.6 Choroidal Neovascularization (CNV)

CNV refers to the proliferation of new choroidal vessels either under the RPE or break-

ing through the RPE mainly in the macula region area as shown in Fig 2.4 (f). It leads

to destruction of the photoreceptors due to exudative damage (fluid, lipids, and blood,

ultimately leading to fibrous scarring) [3]. As a result, objects in that portion of the visual

field may appear wavy or distorted. The natural course of CNV is rapidly deteriorating

acuity, scarring of the pigment epithelium and permanent visual loss or blindness.

Figure 2.4: Pathologies shown in CFP (left) and SD-OCT (right) images. (a) Cotton wool
spots / Soft Exudates1; (b) Hard Exudate [1]; (c) drusen; (d) Geographic Atrophy; (e)
Hyper-Reflective intra-retinal Spots (HRS) (it is not visible in CFP) [2]; (f) Choroidal neo-
vascularization (it is not visible in CFP) [3]. Arrow sign indicated the pathologies.

1 http://www.octmd.org/findings/ischemia/cotton-wool-spot/
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2.4 Diseases manifestation in the retina and the choroid

Eye diseases such as glaucoma and Age-related Macular Degeneration (AMD) tend to

manifest clear signs in the retina and the choroid long before an individual notices a

change in their vision [7,8,12]. Many deadly diseases or strokes also manifest signs in the

retina and the choroid at an early stage before showing any visible symptoms in another

part of the body. Figure 2.5 provides examples of many diseases’ effects on vision. A brief

overview of the most prevalent diseases studied through the retina and choroid analysis

is as follows.

Figure 2.5: Examples of diseases’ effects on vision1 .

1 https://www.nei.nih.gov/

2.4.1 Diabetic Retinopathy (DR)

Diabetic Retinopathy (DR) is also known as diabetic eye disease and Fig. 2.5 shows its

impact on vision. It can eventually lead to blindness and is a leading cause of blindness
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in the world. It affects up to 80 percent of all patients who have had diabetes for 20 years

or more. The blindness due to this disease can be prevented at least 90% by regularly

monitoring the retina and early diagnosis [8, 43].

2.4.2 Age-related Macular Degeneration (AMD)

Age-related Macular Degeneration (AMD) is the most common cause of vision loss in the

world and is a growing public health problem; Fig. 2.5 illustrates the impacts of AMD.

AMD is the cause of blindness for 54% of all legally blind Americans, and the estimated

annual cost burden is estimated as $30 billion [8]. The prevalence of AMD is expected to

increase by 1.5 fold over the next ten years [7]. RPE detachments, sub-retinal or sub-RPE

neovascular membranes, scar tissue, sub-retinal haemorrhages and related hard exudates

(lipids) are its typifications [44]. AMD has two forms: dry and wet. Dry AMD is the initial

form of AMD and wet AMD is the advanced form of AMD.

2.4.3 Glaucoma

Glaucoma is also one of the leading causes of blindness and its impact on vision is shown

in Fig. 2.5. Early diagnosis and optimal treatment have been shown to minimise the risk

of visual loss due to glaucoma. Mostly, this disease affects the ONH region that destroys

side vision. Ophthalmologists are interested in the disc condition such as colour, cupping

size (as a cup-to-disc ratio), swelling, haemorrhages and any other unusual anomalies

that help to track and estimate the severity the disease [8]. The number of glaucoma

patients worldwide is expected to increase by ∼1.5 fold over the next few years due to

an increase in the ageing population [7, 13].

2.4.4 Cardiovascular Disease

Cardiovascular disease manifests itself in the retina in many ways. For example, hyper-

tension and atherosclerosis cause changes in the ratio between the diameter of retinal

arteries and veins, known as the A/V ratio. A decrease in the A/V ratio, i.e. thinning of

the arteries and widening of the veins, is associated with an increased risk of stroke and
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myocardial infarction [8].

2.4.5 Central Nervous System (CNS) Diseases

Anatomically and developmentally, the retina is acknowledged as an extension of the

central nervous system (CNS) [45]. RNFL layer thinning is a symptom of many CNS dis-

eases such as Stroke, Multiple Sclerosis, Alzheimer and Parkinson diseases [45]. Retinal

ganglion cell layer loss is another symptom of Alzheimer and Multiple Sclerosis. De-

generation of optic nerve is a symptom of stroke. RNFL thickness was only significantly

thinner in the nasal quadrant in migraineurs compared to the control group [46].

2.5 Diagnosis method of the retina and the choroid

Retinal imaging is the main approach to diagnosing these diseases. The first retinal imag-

ing was done in 1823 [8], and in 1910, the fundus camera was developed by Gullstrand.

This can capture the retina photographically in 2D. With the invention of OCT 3D, reti-

nal structural imaging was made possible [7, 8]. Table 2.1 reports the significant features

of the imaging technology of the Retina and Choroid. Since this paper focuses on OCT

technology, only this technology is explained in the following section.

2.5.1 Optical Coherence Tomography (OCT) imaging technology

Huang et al. [9] introduced Optical Coherence Tomography (OCT) with micrometre res-

olution and capable of cross-sectional imaging in 1991 for retina in-vivo. From then on,

OCT imaging became a powerful clinical apparatus for monitoring retinal cross-sectional

structure in patients. The principle of OCT is the estimation of the depth by measuring

the time of flight of a specific backscatter using the principle of low coherence interfer-

ometry, also called white light interferometry [8]. The most common interferometer for

the OCT system is a simple Michelson interferometer [10]. In OCT, a 50/50 beam splitter

splits a low coherent light source into two parts. One part of the light is sent to a mirror

located at a specific distance used as a reference beam, and the other part is sent to the

sample (i.e. tissues of the retina). The reflected light from the mirror (reference beam)
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Table 2.1: Significant features of the imaging technology of the retina and the choroid
based on [7–11].

Technology Significant Features

O
ph

‡ Direct Oph‡
Most common use is for a routine physical examination. Shows an
upright and 15 times magnified of a small portion of the interior of
the eye.

Indirect
Oph‡

Allows a wider view even if cataracts cloud the lens. Shows reversed
and up to 5 times magnified of a small portion of the eye interior.

Fu
nd

us
ph

ot
og

ra
ph

y
(F

P)

Red-free
photography

Use a filter for better contrast of the pathologies and others, for ex-
ample; a green filter ∼540-570 nm is used to block out red wave-
lengths of light. Superior to colour photography in the progression
assessment of the DR.

Colour FP Visualisation of the retinal surface is better with colour information.

Stereo FP
Allows photographs in different view angles that can be used to cre-
ate a 3D image. It gives better information about surface character-
istics of the retina.

Hyper-
spectral
imaging

Can construct a 3D data cube for multivariate data analysis. Two
ways of separating spectral: Dispersive Optics (a prism) and inter-
ferometers.

Infrared
Imaging

Can acquire the RPE/BM and detect drusen through small pupils,
blood, or sub-retinal fluid, etc. The light 820 nm wavelength is used
with an SLO for acquiring the image. Cannot define leakage or intra-
retinal fluid.

SL
O

†

Confocal
SLO

Has a high degree of spatial sensitivity, thus useful in monitoring
and diagnosis of glaucoma, macular and other retinal degeneration.

Adaptive
optics
SLO

For improving image quality, confocal SLO is updated with adaptive
optics technology and removes optical aberrations from images.

A
ng
•

F.Ang◦
Can capture a sequence of images of the retina and the choroid that
show the movement of blood over time. It utilises blue excitation
light of ∼490 nm and fluoresces a yellow light of ∼530 nm.

ICG.Ang?
The dye, indocyanine green (ICG) fluorophore, is used for deeper
photography such as for choroidal diseases. It utilises near-infrared
diode laser of 805 nm.

O
pt

ic
al

C
oh

er
en

ce
To

m
og

ra
ph

y
(O

C
T) TD-OCT Lower speed, accuracy and resolution than SD-OCT. Maintains sen-

sitivity regardless of scanning depth.

SD-OCT Higher speed, accuracy and resolution. Maintains sensitivity with
higher speeds but loses sensitivity with increased scanning depth.

SS-OCT
Combines the advantages of standard TD and SD-OCT while sim-
pler than SD-OCT. Since it uses a longer wavelength, it has the po-
tential to image choroid much better than conventional SD-OCT.

‡ Oph: Ophthalmoscope; † SLO: scanning laser ophthalmoscopy; • Ang: Angiography; ◦ F.Ang: Fluorescein
Angiography; ? ICG.Ang: indocyanine green Angiography; TD-OCT: Time Domain OCT; SD-OCT: Spectral
Domain OCT; SS-OCT: Swept Source OCT;
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and the sample occur interference (non-zero cross-correlation) when their flight times

are equal (”equal” means a difference of less than a coherence length), being zero every-

where else because of the low coherence property. The coherence is a measurement of the

correlation of physical quantities (i.e. phase and frequency). Two wave sources will be

perfectly coherent while they are within a constant phase difference and same frequency.

The low coherence means the waves have a profound difference in the phase difference

and frequency. Those reflected lights are recombined at the beam splitter. A photode-

tector collects half of the combined light in the detection arm of the interferometer. Half

of the light is returned towards the source and lost. The interference pattern converted

into an intensity that represents the amount of backscatter from the image location [8].

Equation (2.1) and (2.2) tells that coherence of the light is inversely proportional to the

depth: that is, the less coherent the light, the narrower the peak in the cross-correlation

with the reference mirror.

I = kr Is + ks Is + 2
√
(kr Is) · (ks Is) · Re{γ(τ)} (2.1)

Where kr and ks are two equalisation coefficients for splitting ratio equally for the refer-

ence mirror and sample, respectively, Is the intensity of the source light, and γ(τ) is the

complex degree of coherence which is (2.2).

γ(τ) = exp

[
−
(

π∆vτ

2
√

ln2

)2
]
· exp (−i2πv0τ) (2.2)

where v0 is the centre of the wavelength of the light source (Is) and ∆v is the width of Is

in the frequency domain.

The interference pattern of the light from each single scan point recorded as a depth

profile of the sample called A-Scan is shown in Fig. 2.3. By scanning and combining a

series of these axial depth scans linearly across the sample, it creates a cross-section called

B-scan as shown in Fig. 2.2 and 2.3. Similarly, a combination of the multiple cross-sections

(B-scans) in a linear fashion gives a 3D volumetric image of the sample as shown in Fig.

2.2. A face imaging at an acquired depth is possible by slicing the 3D volume at that

depth called C-scan or enface image or surface image, which provides the interpretation
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that is similar to fundus images or images scanning by laser ophthalmoscopes.

In developing the OCT system, its goal was to maximise the number of A-scans per

unit of time because a higher A-scan per unit of time will reduce the motion artefacts,

increase patient comfort, and achieve high image resolution. As a result, time domain

OCT (the first version of the OCT technology) is obsolete by frequency domain-based

OCT. The frequency domain technique uses a Fourier-transform analysis according to

the Wiener-Khintchine theorem to get the depth position [10]. Removing the mirror im-

proves imaging speed dramatically. The basic version of frequency domain-based OCT

is called Spectral Domain OCT (SD-OCT). SD-OCT is not sensitive enough to capture

the outer limit of the choroid in better resolution. An updated version of SD-OCT called

Enhanced Depth Imaging OCT (EDI-OCT) moved the zero delay line (a point at which

echoes occur and have peak sensitivity) and image averaging from multiple scans [47].

There are some more variations in the frequency domain that can provide the flow ve-

locity, changes in the probe light’s wavelength spectrum, or the polarisation properties

of tissues as in Doppler OCT, spectroscopic OCT, and Polarization-Sensitive (PS) OCT,

respectively [44]. A newer version called Swept Source OCT (SS-OCT) was developed

by combining some of the advantages of standard TD and SD-OCT. SS-OCT has several

advantages over SD-OCT such as increased sensitivity through the full imaging depth,

decreased fringe washout, better axial resolution over a broad imaging range and higher

detection efficiencies. Also, being a longer wavelength, it has the potential to image

choroid much better than conventional SD-OCT [39].

2.6 Retinal and Choroidal OCT imaging

A high-resolution 3D image of the retina and choroid can be captured using the OCT

technology non-invasively in real time. Ten layers and membranes of the retina are iden-

tifiable by the position and intensity level in the OCT image, as shown in Fig. 2.3. The

five layers of the choroid is illustrated in an EDI-OCT image in Fig. 2.3. OCT technology

allows imaging at a new dimension of the retina and the choroid for diagnosis purposes,

called enface image. The enface image is a surface of the image comprising any com-
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bination of the layers, such as average intensity along A-scan of the RPE layer. Figure

2.6 shows an example of the contrast of images from its original and the enface image

which encompassed the MZ/OSL Boundary and shows more clear geographic atrophy

than colour fundus photography [4].

Figure 2.6: (a) SD-OCT B-Scans and (c) and (e) are Enface images of (b) and (d) CFP im-
ages respectively. The atrophic regions (white) in the enface image is much clearer than
CFP images [4]. The red lines showing the outer and inner segmentation lines (arrow-
heads in a) are used to generate the enface.

2.6.1 Pathology Quantification through the OCT image

With advanced imaging techniques of OCT technology, much more info is available to

analyse and assess the clinical relevance of the new information such as volumetric infor-

mation about pathologies. [7, 8]. We next briefly discuss some pathologies quantification

for the retinal disease progression and diagnosis.

2.6.1.1 Quantification value of the drusen

The morphological features such as distinctness, individual size, total area, volume and

number of the drusen used as critical biomarkers of early AMD progression. The pres-

ence of macular large (greater than 125 µm) drusen is a particular finding of non-exudative

disease and is a key risk factor for the development of more advanced stages [20].



32 Background

2.6.1.2 Quantification value of OCT defined Geographic Atrophy

Geographic Atrophy (GA) appears in advanced stages of non-exudative AMD and is

increasingly the leading cause of vision loss in patients [49]. In OCT image, it is also

known as OCT defined GA. The morphological features such as distinctness, individual

size, total area, volume and number of GA are used as the hallmark of advanced non-

exudative (dry) AMD where only OCT allows computation of volumetric information

[4].

2.6.2 Biomarkers computed through the OCT image

With advanced imaging techniques of OCT technology, much more info is available to

analyse and assess the clinical relevance of the new information such as retinal layer

thickness and volumes, etc. [7,8]. We next briefly discuss some biomarkers for the retinal

disease progression and diagnosis.

2.6.2.1 Layer thickness

The thickness of the retinal layer and choroid is a significant biomarker for the retinal and

other diseases such diabetes, AMD, glaucoma, CNS diseases and cardiovascular diseases.

For example, the RNFL, GCL and IPL layers were significantly (p < 0.001) thinner in a

glaucoma eye - approximately 20% less than normal eyes [17]. The choroidal thickness

correlates negatively with age [48] but shows no changes in early AMD [19].

2.6.2.2 Cup-Disc ratio

A widely-used and very vital hallmark and crucial structural indicator for assessing the

presence and progression of glaucoma is a cup-disc ratio. The ratio of optic disc cup and

neuroretinal rim surfaces is called a cup-disc ratio. The normal cup-disc ratio is defined

as 0.5 [50]. In glaucomatous eyes, the death of nerve fibres causes the size of the cup to

increase and thus the cup-to-disk ratio also increases.
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2.6.2.3 Bruch’s Membrane Opening-Minimum Rim Width (BMO-MRW)

The end point of the Bruch’s membrane at the ONH is called a Bruch’s membrane open-

ing (BMO). So the minimum distance between BMO and ILM is referred to as the BMO-

minimum rim width (BMO-MRW), as shown in Fig. 2.7, a strongly correlated biomarker

for glaucoma. The visual sensitivity of Glaucoma patients significantly corresponds to

the BMO-MRW (r = 0.32, p < 0.001), which has higher correlation than RNFL Thickness

and BMO-MRW volume (r = 0.26, p < 0.001) [21]. BMO-MRW in normal patients is 307

± 84.3 µm whereas early glaucoma patients have 211 ± 60.5 µm [22].

Figure 2.7: Example of BMO-MRW and MDB.

2.6.2.4 Minimum Distance Band (MDB)

The MDB is the circular band and computed by the minimum distance between ONH

surface and RPE as shown in Fig. 2.7. It is a strongly correlated biomarker for glaucoma

and also a parameter of the optic disc. Moreover, the correlation coefficient between the

MDB and cup-disc ratio are −0.88 and −0.56 for MDB value and area respectively with

p < 0.05 which means MDB has a profound correlation to a glaucoma-like cup-disc ratio

[12].

2.6.2.5 Attenuation Coefficient of the RNFL

It is a normalisation technique of the OCT strength where it reduces the artefact and

error due to media opacities, the power of the incident light beam, and the intermediate
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tissue before reaching the deeper tissues. By increasing the severity label of glaucoma,

RNFL’s attenuation coefficient decreases. There is also a significant structure-function

relationship between the attenuation coefficient and the visual field’s mean defect [23].

An example of the attenuation coefficient of the RNFL is shown in Fig. 2.8. Schoot et al.

[43] suggested the attenuation coefficient of the RNFL from the RNFL and RPE signal for

each A-scan using the following formula.

µRNFL =
log
(

R
β + 1

)
2d

(2.3)

Where R denotes the ratio of the RNFL and the RPE for an A-scan, d denotes the

thickness of the RNFL, and β is 2.3.

Figure 2.8: An example of the attenuation coefficient of the RNFL [5].

2.6.2.6 Relative intensity of the second reflective band (EZ layer)

The first reflective band is ELM and second reflective band is EZ. The ratio between

the peak intensity of the EZ and ELM defines the relative intensity value of the second

reflective band. The control patients average 2.27 where early AMD patients have 1.73

ratio value of the relative intensity of the second reflective band [16].
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2.7 Retinal and Choroidal OCT image analysis

Image processing for the OCT expands in many dimensions such as layer detection, ONH

detection, blood vessel detection, choroid detection and pathologies detection [7,8,10,51].

The abnormalities and layers of the retina and choroid are the main focus to be detected

by the OCT images. Some segmentation methods have been proposed since 1995 to en-

hance the clinical benefit of the OCT, such as detecting and quantifying the pathologies

and layers. However, none of those methods are capable of segmenting layers with good

accuracy in all conditions due to different challenges in the OCT image. In the follow-

ing subsections, we will describe the difficulties that need to be met for successful OCT

image processing, followed by the detailed background.

2.7.1 The challenges in the OCT image processing

The challenges of the retinal images come from image technology and structure of the

retina. Due to image acquisition technology and reality, OCT images are contaminated

by additive and speckle noises. The structure of the retina is also different in various

areas such as the optic disc and macula, and the image also becomes more unpredictable

in the presence of the pathologies such as GA or drusen [7, 8, 10, 52]. More details of the

challenges are as follows.

• Noise: The OCT images usually have two types of noises: additive and speckle.

These decrease the contrast of the layers’ boundary and eventually decrease the

quality of the image. As a consequence, noise increases the difficulties of boundary

identification and other abnormalities detection. It is a major problem for poor

image segmentation.

• Intensity Variation within an area: Intensity of the homogeneous region decreases

deterministically with increasing the imaging depth due to the methodology of the

OCT technology. Variations are produced by absorption and scattering of light in

the retinal tissue.

• Optical shadows and low optical contrast: Since haemoglobin absorption of light
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is high, the retinal blood vessels create optical shadows and generate low optical

contrast. This will also misguide the detection algorithm that needs to address the

issue and will require extra effort for accurate detection.

• Irregularities in Anatomical Structural: The retinal layers present varying thick-

nesses and generally provide weak contrasts. Moreover, the anatomical structure

of the retina is not the same for the entire region such as macula and optic disc, as

shown in Fig. 2.2.

• Irregular shaped of pathologies: The presence of pathologies such as macular holes,

retinal detachments, geographic atrophy and drusen in the retina and the choroid

creates non-uniform morphological changes in the layers as shown in Fig. 2.4. As a

result, the difficulties and challenges of the identification of the layers’ boundaries

are severe.

2.7.2 Pre-processing methods on the OCT images

De-noising Optical Coherence Tomography (OCT) image data was an active area of re-

search until a few years ago, before high resolution of OCT images was introduced [53].

Our study observes that the traditional standard image de-noising and filtering tech-

niques have been used for pre-processing of the retinal images. In Table 2.2, we have

reported several noise reduction methods used by researchers for OCT image process-

ing.

2.7.3 Detection of the retinal layers or boundaries

Most research on retinal OCT image analysis were on the retinal layer segmentation since

the OCT invention. Some studies have reported semi-automatic and automatic meth-

ods of the retinal layers segmentation in all kinds of OCT images. A simple threshold

technique to complex machine learning and graph search approach has been used for

detecting layers in 2D and 3D imaging [7, 8, 10, 52]. Approaches include thresholding,

edge detecting, active contour method, machine learning and graph-based multi-surface

segmentation. However, these methods do not perform well on noisy images, thin layer,
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Table 2.2: The noise reduction methods on OCT images.

Mth Type Aims & Researchers

N
on

e

TD RL: Ishikawa et al. [54], Tan et al. [17]

SD

RL: Fuller et al. [55], Ahlers et al. [56], Yazdanpanah et al. [57], Fabritius et al. [58], Yang et
al. [59], Vermeer et al. [60], Kafieh et al. [61], Antony et al. [62], Tian, et al. [63]; CL: Zhang et
al. [64] , Hu et al. [65], SEADs: Dolejsi et al. [66], PED: Ahlers et al. [56] Drusen: Baumann
et al. [44] GA: Baumann et al. [44], Hu et al. [67], ONH: Abramoff et al. [68] RV:Dittrich et
al. [37], Hu et al. [69], Hu et al. [70], Hu et al. [71], Kafieh et al. [72]; CV: Zhang et al. [64],
Kajic et al. [73]

EDI CL: Danesh et al. [74]

M
ea

n
Fi

lt
er TD RL: Huang et al. [75], Ishikawa et al. [76]

SD
RL: Chiu et al. [77], Chiu et al. [78], Ehnes et al. [79], CL: Chen et al. [80], ONH: Lee et al.
[81], Miri et al. [82]

PS CL: Torzicky et al. [83], Duan et al. [84]
EDI CL: Tian et al. [85], Alonso-Caneiro et al. [86]

M
ed

ia
n

Fi
lt

er

TD
RL: George et al. [87], Koozekanani et al. [88], Shahidi et al. [89], Boyer et al.[90], Baroni et
al. [91], Zang et al. [92],ONH: Herzog et al. [93], Zang et al. [92]

SD
RL: Srinivasan et al. [94], Tolliver et al. [95], Tan et al. [96], Tumlinson et al. [97], Koprowski
et al. [98], Lu et al. [99], Mayer et al. [100], Lang et al. [101], Ehnes et al. [79],ONH: Lee et al.
[81], RV: Lee et al. [102]

G
au

ss
.

Fi
lt

er TD RL Baroni et al. [91], FFR: Fernandez et al. [103]
SD RL: Chiu et al. [77], Chiu et al. [78],RV: Guimaraes et al. [104]
EDI CL: Mazzaferri et al. [105]

A
D

Fi
lt

er

TD RL: Gregori et al. [106], Haeker et al. [107], Garvin et al. [108],FFR: Fernandez et al. [103]

SD

RL: Mujat et al. [109], Garvin et al. [110], Antony et al. [111], Ghorbel et al. [112], Antony et
al. [113], Song et al. [51], Dufour et al. [114], Rossant et al. [115], Duan et al. [116] SEADs:
Chen et al. [117] Drusen: Yi et al. [118], ONH: Antony et al. [119], RV: Niemeijer et al. [120],
CV: Duan et al. [121]

O
th

er
s

TD RL: (CDF) Fernandez et al. [103], (WPB) Bagci et al. [122], (LPF) Hee et al. [123]

SD

RL: (WPB) Bagci et al. [122], (AVK) Mishra et al. [124], (DTCW) Kajic et al. [125], (BF) Lu
et al. [99], Shi et al. [126]; (WT) Lee et al. [127], (STD) Niu et al. [128], (LPF) Mayer et al.
[129], Farsiu et al. [130], Lang et al. [101], SEAD: (WT) Quellec et al. [131], PED: (BF) Shi et
al. [126], Drusen: (BF) Chen et al. [132], GA: (BF) Chen et al. [49],RV: (STD) Wu et al. [133],
(BEM) Pilch et al. [134], (LPF) Wehbe et al. [135]

EDI CL: (WF) Tian et al. [85], Beaton et al. [136], (BM3D) Vupparaboina et al. [137]
The first column gives the method that researchers used and the second column identifies the type of OCT
used. The third column lists the aim of the research and the researchers. Text colours of the researchers rep-
resent 1D (red), 2D (green) and 3D (blue) segmentation methods. The reported formats of the third column
are as follows. 1) X: a, b, c, ... means the aim of the researchers a, b, and c is to detect X. 2) X: (Y) a, b, ... means
the objective of the researchers a and b is to detect the X using Y filter.
AD: Anisotropic Diffusion; AVK: an Adaptive Vector-valued Kernel function; BEM: a general Bayesian Es-
timation based Method; BF: Bilateral Filter; BM3D: Block-Matching and 3D filtering; CL: Choroidal Layer;
CDF: Complex Diffusion Filter; CV: Choroidal Vessel; DTCW: Dual-tree Complex Wavelet; FFR: Fluid-Filled
Regions; Gauss.: Gaussian; GA: OCT defined Geographical Atrophy; LPF: Low Pass Filter; Mth: Meth-
ods; ONH: Optic Nerve Head; PED: Pigment Epithelial Detachments; RL: Retinal Layer; RV: Retinal Vessel;
SEAD: Symptomatic Exudate-Associated Derangement; STD: Sparse 3-D Transform-Domain collaborative
filter; Type: OCT Types; WF: Wiener Filter; WPB: Wedge-shaped Pass Band; WT: Wavelet Transformation.
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presence of pathologies etc. of the retina [116]. Poor performance of current automatic

detection algorithms for segmenting the retinal layers show there is a strong need for a

robust algorithm to diagnose and monitor eye diseases.

The layer tracking methods are categorised into two groups: Layer segmentation of

normal or healthy subjects’ images and Layer segmentation in the presence of pathology

[8,10,52]. For the first category, some methods propose using active contour, graph-based

and machine learning approaches for the identification of the retinal layer boundaries.

On the other hand, for Category Two, very few methods have been published [8]. Hee

et al. [123] proposed an automatic method for computing retinal thickness on finding

peaks in 1-D using kernel and threshold. Since then, many methods have been published

on 2D and 3D segmentation. Ruggeri et al. [138] published the first 3D segmentation

method for Rodent OCT imaging which segments ILM-RNFL, IZ-RPE, and RBC bound-

aries. Table 2.3 reports all the main methods of layer segmentation including the types of

the OCT images used. A short description of the methods are provided in the following

subsections.

2.7.3.1 Thresholding techniques:

Several methods proposed in the early years of the OCT imaging analysis are based on

the direct thresholding technique. These methods are prone to noise, are less accurate

and hence not very useful. In Table 2.3, we report some of the threshold-based methods

and here we briefly describe some significant methods.

Hee et al. [123] proposed a method for measuring the thickness of the retina and

RNFL layer using a simple threshold on the intensity value. It was the first report of OCT

image processing and quantitative information. George et al. [87] proposed using dual

thresholding for measuring thickness and volume of the retina and choriocapillaris struc-

tures. Unfortunately, very little information is available about this system. Since fixed

thresholding is unreliable, an adaptive thresholding-based method of detecting ONH

was proposed by Herzog et al. [93]. They applied 1-D kernel named Marr-Hildreth op-

erator in each column of the OCT B-scan and defined the edges of the boundary using

an optimal threshold that was found from analysing smoothness constraints. They eval-
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Table 2.3: The segmentation methods for various structures of the retina and the choroid
from OCT images.

MM Type Aims & Researchers

Th
re

sh
ol

di
ng TD RL: Hee et al. [123], George et al. [87], ONH: Herzog et al. [93]

SD
RL: Szkulmowski et al. [139], CL: Vupparaboina et al. [137], ONH: Moupagiatzis et al. [140]; RV:
Wehbe et al. [135], Dittrich et al. [37], Kafieh et al. [72] CV: Zhang et al. [64], Kajic et al. [73], Duan
et al. [121]

PS RL: Gotzinger et al. [141]; CL: Torzicky et al. [83]

Pe
ak

Fi
nd

in
g

TD
RL: Huang et al. [75], Ishikawa et al. [54], Shahidi et al. [89], Ishikawa et al. [76],Fernandez et al.
[103], Baroni et al. [91], Tan et al. [17],

SD RL: Srinivasan et al. [94], Ahlers et al.[56], Tan et al.[96], Tumlin et al.[97], PED Ahlers et al.[56]

Ed
ge

Ba
se

d TD RL: Koozekanani et al. [88], Boyer et al. [90], Baroni et al. [91], Bagci et al. [122]

SD RL: Bagci et al. [122], Tolliver et al. [95], Yang et al. [59], Niu et al. [128]

Li
ne

Fi
tt

in
g

SD
CL: Zhang et al. [64], Drusen: Farsiu et al. [130], Toth et al. [142], Baumann et al. [44], Gregori et
al. [143], Iwama et al. [144], Chen et al. [132]; GA: Baumann et al. [44], ONH: Zang et al.[92]

A
ct

iv
e

C
on

to
ur TD FFR: Fernandez et al. [103]

SD
RL: Mujat et al. [109], Farsiu et al. [130], Mishra et al. [124], Yazdanpanah et al. [57], Koprowski
et al. [98], Ghorbel et al [112], Rossant et al. [115], Toth et al. [142]], Mayer et al. [100], Dufour et
al. [114], GA: Chen et al. [49], Hu et al. [67] , RV: Pilch et al. [134]

U
C

SD
RL: (OTSU) Fabritius et al. [58]; (K-means) Kafieh et al. [61]; (FCM) Mayer et al. [129], RV:
(K-means) Wu et al. [133]

M
ac

hi
ne

le
ar

ni
ng

SD

RL: (SVM) Fuller et al. [55], Vermeer et al. [60]; (RF) Lang et al. [101], Antony et al. [62] , (AAM)
Kajic et al. [125], CL: (AAM) Kajic et al. [145], ONH (k-NN) Abramoff et al. [68], Miri et al. [82],
Lee et al. [81]; RV (SVM) Guimaraes et al. [104], (BA) Xu et al. [36], (k-NN) Niemeijer et al. [120],
Hu et al. [69], Hu et al. [70], Hu et al. [71], Garvin et al. [146]

G
ra

ph
M

et
ho

d

TD RL: (MFMC) Haeker et al. [107], Garvin et al. [108]

SD

RL: (MFMC) Garvin et al. [110], Antony et al. [111], Lee et al. [127], Antony et al. [113], Song et al.
[51], Lang et al. [101], Dufour et al. [114], Antony et al. [62], Shi et al. [126], Zang et al. [92], (SPA)
Chiu et al. [77], Yang et al. [59], Chiu et al. [78], Ehnes et al. [79], Tian, et al. [63], Duan et al. [116];
CL: (MFMC) Chen et al. [80]; (SPA) Kajic et al. [145], Hu et al. [65], SEAD: (MFMC) Quellec et al.
[131], Dolejsi et al. [66], Chen et al. [117]; PED: (MFMC) Shi et al. [126], ONH: (MFMC) Antony
et al. [119]; (SPA) Hu et al. [147], Hu et al. [148] RV: (MFMC) Lee et al. [102], Hu et al. [69],

EDI
CL: (MFMC) Danesh et al. [74]; (SPA) Tian et al. [85], Alonso-Caneiro et al. [86], Beaton et al.
[136], Mazzaferri et al. [105]

PS CL: (SPA) Duan et al. [84]
The first column gives the main method that researchers used and the second column identifies the type of
OCT used. The third column lists the aim of the research and the researchers. Text colours of the researchers
represent 1D (red), 2D (green) and 3D (blue) segmentation methods. The reported formats of the third col-
umn are as follows. 1) X: a, b, c, ... means the aim of the researchers a, b, and c is to detect X. 2) X: (Y) a, b, ...
means the objective of the researchers a and b is to detect the X using Y method.
AAM: Active Appearance Model; BA: Boosting Algorithm; CL: Choroidal Layer; CV: Choroidal Vessel; EM:
Energy Minimisation; FCM: Fuzzy C-means Clustering; FFR: Fluid-Filled Regions; GA: OCT defined Geo-
graphic Atrophy; k-NN: k-Nearest Neighbour Classifier; MFMC: Max-Flow-Min-Cut (closed set); MM: Main
Methods; ONH: Optic Nerve Head; PED: Pigment Epithelial Detachments; RF: Random Forest; RL: Reti-
nal Layer; RV: Retinal Vessel; SEAD: Symptomatic Exudate-Associated Derangement; SPA: Shortest Path
Algorithm (minimum cost finding); SVM: Support Vector Machine; Type: OCT Types; UC: Unsupervised
Clustering.
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uated their method’s performance qualitatively. Szkulmowski et al. [139] proposed a

semi-automatic method for identifying two boundaries of the retinal layers using mul-

tiple thresholding on intensity and variance with manual intervention. Gotzinger et al.

[141] proposed an automated method for RPE layer detection from PS-OCT images using

thresholding in the degree of polarisation uniformity. They showed qualitative results in-

stead of any quantitative analysis. However, these methods are subjective and can suffer

from low accuracy in the presence of noise.

2.7.3.2 Peak finding or Edge detection methods:

Since thresholding methods are less accurate and unreliable, researchers have proposed

sets of rules that describe properties such as highest gradient value and peak finding

or edge detection-based methods for detecting the retinal layers. Several methods have

been proposed (see Table 2.3) and here we discuss some of them.

Huang et al. [75] proposed an automated method for measuring the thickness of the

retina and the choroid. It was the first reported using hereditary retinal degeneration in

animals from TD-OCT imaging. A computer algorithm based on signal amplitude and

slope was used to locate the signal features of transitions, peaks, valleys and plateau-like

regions which defined the positions of the layers. Later, Ishikawa et al. [76] proposed

a method for detecting six boundaries of the retinal layers from TD-OCT images. They

used a cut-off threshold value by analysing reflectivity histogram of each A-scan. If adja-

cent A-scans had disruption, they recomputed the cut-off threshold value for reflectivity

threshold, peak width and peak height for the segmentation algorithm. They showed

layer thicknesses were significantly greater in normal than in glaucomatous eyes using

47 subjects. Fernandez et al. [103] proposed a method based on a peak-finding algorithm

for detecting seven boundaries of the retinal layers and tested on 72 OCT scans with

AMD and glaucoma patients. They computed structure coherence matrix from original

image intensity using a diffusion tensor for finding peaks. Local maximum characteristic

and the first derivative changes sign from either positive to negative or from negative to

positive are used for finding the peaks and the edges of boundaries. The algorithm can

detect the boundaries reasonably well in almost the entire macula, except for the region
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where the layer structure is distorted by the presence of abnormal fluid (cyst). They also

offered semi-automatic correction of the automatic detection. Srinivasan et al. [94] pro-

posed a modified version of Koozekanani et al. [88] to detect six boundaries of the retinal

layers using peak finding on a complex matrix that is formed by zero crossing, intensity

etc. They tested their method on 43 normal subjects and found an error in eccentricity

varying from -4 to 1 µm.

These techniques are not sufficient to determine the retinal layers with an acceptable

accuracy and are still prone to error due to noise and pathologies in the image. Many

methods have used peak or edge detection for finding potential regions, or nodes of a

graph for layers and a graph search method for finding the layers. These schemes are

described in later sections.

2.7.3.3 Active contour method:

An active contour method is an energy-minimising problem where deformable splines

are influenced by constraint and image forces that pull it towards object contours and

internal forces that resist deformation. Several methods have been proposed using this

method and these are reported in Table 2.3. The major drawbacks to this approach are

computational inefficiency and poor accuracy in the presence of noise and pathologies.

Some important methods based on an active contour algorithm are described below.

Mujat et al. [109] proposed a method of segmenting RNFL layer using deformable

splines (snake algorithms) from SD-OCT images. They initialised the snake algorithms

and defined the external force field by detecting a boundary approximately based on the

threshold of a filtered image and a gradient image. The algorithm detects the boundaries

with reasonable accuracy in 350 frames within an SNR range of 31-44 dB, except for a

few isolated places. Later, a semi-automatic method for segmenting six boundaries of

the retina based on ChanVese’s energy-minimising active contour was proposed by Yaz-

danpanah et al. [57] from 20 rats’ SD-OCT images. The noise was added synthetically to

evaluate segmentation method for showing the robustness of the method and achieved

an average Dice similarity coefficient of 0.85. The minimisation of an energy function

consisting of gradient and local smoothing terms based segmentation method for three
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boundaries of the retinal layers was proposed by Mayer et al. [100]. They achieved a

mean unsigned error (MUE) per A-Scan of 2.9 µm on glaucomatous eyes, and 3.6 µm on

healthy eyes. Ghorbel et al. [112] proposed a method for segmenting nine boundaries

of the retinal layers using Active contours, Markov random fields, and a Kalman filter.

They detected approximate locations of hyper-reflective complex (lower bright layers)

using k-means clusters. These approximate locations were used to initialise the active

contour for detecting the boundaries. A large dataset of 700 subjects had been used for

evaluating their method and the study achieved MUE nearly 3 pixels. Recently, a mod-

ified active contours or snakes-based nine boundaries of the retinal layers segmentation

algorithm was proposed by Rossant et al. [115]. They called this modified active con-

tours as parallel double snakes are good in detecting the deformable models, which are

nearly parallel lines. The parallel double snakes simultaneously grow two contours and

minimise an energy function which attracts these contours towards high image gradients

and enforces the approximate parallelism between them. The segmentation achieved a

similarity index of above 0.87, sensitivity between 0.85 and 0.93, and specificity between

0.84 and 0.94.

2.7.3.4 Unsupervised clustering:

A few methods have been proposed based on unsupervised clustering such as k-means

clustering, OTSU clustering and Fuzzy C-means clustering for the retinal layers detec-

tion, as shown in Table 2.3. The clustering was used either directly on the image intensity

or gradient, or on a modified matrix such as Eigen values or a combination of intensity,

gradient or other textural information. A brief description of those significant methods

follows.

Mayer et al. [129] proposed an automatic method for segmenting RNFL layer using

Peaks finding and Fuzzy C-means clustering. For each peak in the image, they defined

feature vectors which were constructed with pixel positions, intensities, gradient values

etc. These feature vectors were clustered with fuzzy C-means clustering used to define

the boundaries. They used Median and Gaussian filter in post-processing to reduce error.

They evaluated with 12 SD-OCT B-scans and found border positions errors within 2 pix-
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els range for 98% ILM-RNFL boundary and 72% RNFL-GCL boundary. OTSU clustering

was used to segment two boundaries of the retinal layers by Fabritius et al. [58] from SD-

OCT images. They incorporated 3D intensity information to improve the intensity-based

segmentation without massive pre-processing of the OCT image. More than 99% and

97% of depth scans had a smaller error for ILMRNFL and IZ-RPE in normal and ARMD

patients respectively. Kafieh et al. [61] created a diffusion map using Eigen-values and

functions decomposition from SD-OCT image intensities. A K-means cluster was applied

in a sequential order on that diffusion map to find 11 boundaries of the retinal layers. The

overall MUE of border positions (BPs) in (mean ± SD) was 7.56 ± 2.95 µm. The method

relies on regional image texture and demonstrates robustness in the low contrast between

boundaries.

The methods that use unsupervised clustering as their main approach suffer from

less accuracy due to noise, pathologies, and devices from where OCT is obtained. They

are also subjective. There are several methods using clustering as intermediate steps for

reducing the search space to improve accuracy and layer detection by the graph search

method described in a later section.

2.7.3.5 Machine learning and pattern recognition technique:

A few methods proposed using a different type of machine-learning and pattern recogni-

tions (supervised clustering) technique such as support vector machine, Random Forest,

and k-NN classifier, as shown in Table 2.3. A brief description of some significant works

on the machine-learning technique for the retinal layers detection follows.

The first machine-learning approach based on support vector machine for the reti-

nal layers detection was proposed by Fuller et al. [55]. They proposed a semi-automatic

method for detecting three boundaries (ILM-RNFL, MZ-EZ, RBC) of the retinal layers us-

ing a Multi-resolution Hierarchical support vector machine from SD-OCT images where

the features were formed by scalar intensity, gradient, spatial location, mean of the neigh-

bours and variance of the pixels in manually drawn regions. They evaluated their method

with four subjects and found the average boundary position error is around four pixels

with a standard deviation of six pixels. An active appearance model-based segmentation
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method was proposed by Kajic et al. [125] with the aim of detecting nine boundaries

of the retinal layers from SD-OCT images. They had used shape and texture informa-

tion of the images as features for training and detecting phase of the machine-learning

algorithm. They evaluated a large dataset of 466 B-scans from 17 subjects. The method

showed a difference of only 2.6% against the inter-observer variability. Another support

vector machine-based retinal layers segmentation algorithm was proposed by Vermeer et

al. [60]. They used eight features constructed by the intensity and gradient distribution

for detecting five boundaries of the retinal layers. They evaluated the method in 18 sub-

jects, and root mean square errors (RMSEs) for the first and last boundary of the retina

were between 4 and 6 µm, while the errors for intra-retinal interfaces were between 6 and

15 µm.

2.7.3.6 Graph search method:

Most of the efficient and accurate methods published use a different type of graph search

such as max-flow-min-cut, minimum-cost closed set and the shortest path algorithms

(see Table 2.3). Several improved optimal 3-D graph search approaches (including fluc-

tuating feasibility constraints [43] and soft constraints [44, 45]) were designed for detect-

ing numerous surfaces: these significantly improved the segmentation accuracy. A few

methods defined different constraints or coefficient of graph edge weight using machine-

learning or other optimisation techniques such as Simulated Annealing [62, 101]. Brief

descriptions of some significant works on the graph search method for retinal layers de-

tection are described next.

A group from Iowa University published several algorithms using a max-flow-min-

cut algorithm for detecting the retinal layers. Haeker et al. [107], first from the Iowa

group, proposed a method of detecting two boundaries of the retinal layers from TD-OCT

images. In 3D, the boundaries form surfaces of the retinal layers. Haeker et al. detected

each surface of the layers as a minimum s-t cut from a geometric graph constructed from

edge/regional information and a priori-determined surface constraints. An updated ver-

sion of that work, a multilayer segmentation using a minimum-cost closed set in a geo-

metric 3-D graph, was suggested by Garvin et al. [108] for detecting six boundaries of the
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retinal layers from TD-OCT images. It was the first reported approach for an automated

3D segmentation of intra-retinal layers. A total of 24 eyes from 12 subjects were used

for evaluation purposes and found an overall mean unsigned border positioning error of

6.1±2.9 µm. They applied the same method for SD-OCT images as well [109] and found

that an overall mean unsigned border positioning error of the boundaries was 5.69± 2.41

µm in 13 subjects. This group published several methods for improving the segmenta-

tion of the ONH, retinal layers in both macula and ONH centred images and released

a software package which is available on request for research purposes [149]. Antony

et al. [62] (another work of their group) proposed a segmentation method based on a

minimal cost closed set graph problem for segmenting seven boundaries of the retinal

layers; where Random Forest was used to define the parameters of the cost function for

the graph. Haar, Gabor, Gaussian, Steerable filters and intensity features are used to train

the system and form the cost function. The overall unsigned border position errors ob-

served when using the recommended configuration of the graph-theoretic method was

6.45 ± 1.87 µm, 3.35 ± 0.62 µm and 9.75 ± 3.18 µm for the human, mouse and canine sets

of images, respectively.

Chiu et al. [77] proposed a method to detect eight boundaries of the retinal layers

from SD-OCT images using the shortest path-finding algorithm. Their edge weights of

graph nodes were computed with vertical gradient information of the pixels where each

pixel formed a node. They evaluated ten healthy images and found the overall mean

and standard deviation for the border positions errors in percentage were 0.26% and

0.09% respectively. An updated version of their work [78] was published for detecting

pathological distorted boundaries from the retina. In this updated version, they included

distance of the nodes in the computation of edge weights and detected three boundaries

distorted for drusen and geographic atrophy. In total, 220 B-scans from 20 patients were

used for evaluation purposes, and the mean unsigned error for the reproducibility of the

whole retina and RPEDC volumes were 0.28%± 0.28% and 1.60%± 1.57%, respectively.

Lang et al. [101] proposed a segmentation method using Random Forest and a max-

flow-min-cut algorithm. The Random Forest was used to create a probability map using

27 features of spatial awareness, local and context-aware features. A Graph max-flow-
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min-cut was applied on that map to find the boundaries of the layers. In total, 35 subjects

of healthy and diseased eyes were used to evaluate the method and the mean unsigned

boundary position error for the dataset in mean ± SD is 3.38 ± 4.10µm. There are no dif-

ferences in performance for the healthy or MS subjects. They share their system publicly

as a whole software package, named AURA tools [150].

Dufour et al. [114] proposed a method for identifying six retinal layer boundaries

using the energy minimisation and solved by a graph-based multi-surface segmentation

algorithm, an extended version of Song et al. [51]. They added the use of soft constraint

for the regularisation of the distances between two simultaneously segmented surfaces;

a total of 50 B-scan segments were manually processed for evaluation. An extensive eval-

uation showed a mean unsigned segmentation error of 3.05 ± 0.54 µm over all datasets.

Their system is publicly available [151].

Tian et al. [63] have proposed a method using a graph shortest path approach: OCTRIMA-

3D. They flatten the image based on a reference boundary. Gradient information and al-

ready detected boundaries are used to choose the region of interest. Biasing and Masking

are used to increase the contrast of the low contrast boundary. Finally, a Dijkstra shortest

path is used to find the retinal boundary. The graph weight computation is similar to

the method proposed by Chiu et al. [77]. They evaluated the method on two datasets

including Chiu et al.’s [77] dataset. They showed their method is superior to the Iowa

and Dufour methods. The average unsigned error of border positions was about 1 pixel

(i.e., 4 µm for this image set).

Duan et al. [116] computed a distance map using a fast sweeping algorithm: the

geodesic curve is then detected using a discretised gradient descent. The geodesic curve

is the shortest path where the geodesic distance between nodes is smallest. They showed

the method was better than four state-of-the-art methods on their local and public dataset.

2.7.4 Detection of the choroid and its layers

The EDI-OCT and SS-OCT technology (with a greater penetration signal, i.e. it reaches

below the retina) offers the cross-sectional image of the choroid which gives an oppor-

tunity to compute the choroidal thickness. Recent reports have demonstrated a suc-
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cessfully automated measurement of choroid thickness (CTh) in healthy and pathologic

states from optical coherence tomography (OCT) images [31, 80, 152]. Some studies have

reported semi-automatic and automatic methods of choroid segmentation in different

types of OCT images such as PS-OCT, SD-OCT and EDI-OCT [65,80,85,145]. Approaches

include thresholding, machine-learning and graph-based multi-surface segmentation.

However, these methods have limitations for the variable size, noisy image, presence

vessels, etc. of the choroid [80]. The lack of robustness and accuracy of the automatic

choroid detection (the choroid is defined by the RBC and CSI boundaries) and the need

for an automatic algorithm for monitoring and diagnosis of choroidal diseases is still

the subject of active research to develop a robust, reliable and more accurate automatic

system for the measurement of CTh. We have reported the main methods used by re-

searchers in Table 2.3 and a brief description of the important method of detecting the

choroid is follows.

Zhang et al. [64] proposed threshold-based choroidal layers and a vessel detection

algorithm from SD-OCT images. They created a tensor matrix for each voxel containing

local directionality and shape information. A multi-scale Hessian matrix analysis was

applied and created a vesselness map from where voxels were defined as vessel using

an experimentally- determined threshold. They found average dice coefficient of the re-

producibility is 0.78 ± 0.08 on 24 normal subjects. Kajic et al. [145] proposed a neural

network and Active Appearance Model-based algorithm for detecting the choroid outer

boundary, also known as a CSI from SD-OCT images. They evaluated 871 manually

segmented cross-sectional scans from 12 eyes with pathologies and AMD. The average

error rate for identifying the CSI was 13%. Vupparaboina et al. [137] proposed an auto-

mated method for detecting choroid using thresholding on a structural similarity (SSIM)

index, tensor voting, and Eigenvalue analysis of the Hessian matrix. The thickness error

was 9.15 µm. Chen et al. [80] proposed a method for detecting choroid using threshold-

ing, graph max-flow-min-cut, and the energy minimisation technique. They computed

a gradual intensity distance image from where nodes were defined. The edge weights

were computed using a complex form of the distances between nodes. Then a 2D graph

search method with curve smooth constraints obtained the CSI positions. They evalu-
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ated 212 High Definition (HD)-OCT images from 110 eyes in 66 patients. The mean CTh

difference and overlap ratios are 6.72 µm and 85.04%, respectively, and thus superior to

the method of Tian et al. [85], a graph shortest path-based choroid detection method.

2.7.5 Detection of the Optic Disc/ Optic Nerve Head/ Cup and Rim

The hallmark of glaucoma is cupping of the optic disc. Currently, CFP is used as a

gold standard to compute the cup-disc ratio. With the introduction of SD-OCT imag-

ing, it is possible to extract new information from the optic disc such as a 3D structure.

Consequently, many researchers try to find the ONH from OCT images and compute

as biomarkers for the Glaucoma progression including cup-disc ratio, MDB, and BMO-

MRW. Herzog et al. [93] devised the first automatic method to detect ONH from TD-

OCT using an adaptive thresholding approach. Many other methods have since been

published for other OCT modality such as SD-OCT to get the 3D structure of the ONH.

Markov model, k-NN classifier, Graph Search: max-flow-min-cut, line fitting on the de-

tected retinal layers boundaries (for example BM) are used to detect the border of the

ONH as shown in Table 2.3. Miri et al. [82] had been used a multi-modal approach

(OCT + CFP) for ONH detection. A brief description of optic disc or ONH detection is

described next.

The method proposed by Herzog et al. [93] is the first published work on the ONH

detection from TD-OCT image which used adaptive threshold and edge detection. Their

method was based on edge maximisation and smoothness constraints to choose an opti-

mal threshold to automatically extract the ONH. The method also detected retinal bound-

aries from axial OCT scans through ONH but did not provide any performance evalua-

tion other than the demonstration of some output segmented images. In 2009, Abramoff

et al. [68] proposed a method of detecting ONH cup and rim by combining a multi-scale

3D graph search algorithm and a voxel column classification algorithm using a k-NN

classifier. Ten features consisting of distances and intensities with respect to surface of

the retinal layers were used for the classifier. This study showed a high correlation be-

tween automatic segmentation results and results of glaucoma experts. Lee et al. [81]

also proposed an improved technique based on similar methodology using graph search
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combined with a k-NN classifier. They employed contextual information combined with

a convex hull based fitting procedure to segment the ONH cup and rim. They achieved

accuracy with an unsigned error for the cup detection of 0.076 ± 0.026 mm and the neu-

roretinal rim of 0.061 ± 0.026 mm. Hu et al. [148] developed a graph-based method

for the automated segmentation of the cup and ONH from OCT datasets. The method

detected the location of blood vessels, as they are quite large in the ONH. They found

correlations of the linear cup-to-disc area ratio, disc area, rim area and cup area be-

tween manual and automatic detection which were 0.85, 0.77, 0.69, and 0.83, respectively.

Moupagiatzis et al. [140] detected ONH based on thresholding and some morphological

operations with sensitivity 0.89 and specificity 0.98. Miri et al. [82] proposed a multi-

modal imaging approach using both SD-OCT and CFP images for detecting ONH using

k-Nearest Neighbour (k-NN) classifier and Iterative Closed Point registration. A total of

33 features are extracted from both modalities and a k-NN classification approach is used

to classify the pixels as cup, rim or background. They showed that multi-modal imag-

ing approach gains more accuracy over uni-modal imaging approach (i.e. only SD-OCT)

(97.8% versus 95.2%; p < 0.05; paired t-test). Antony et al. [119] described a segmen-

tation method for detecting ONH from SD-OCT image using a Random Forest classifier.

They used individual feature significances to select 20 features for the classifier to classify

pixels as ONH. They found the 3D Euclidean distance of the Neural Canal Opening was

55.29 ± 33.97 µm.

2.7.6 Detection of pathologies and extracting the biomarkers

The main goal of the automatic segmentation of the OCT image analysis is to help oph-

thalmologists to diagnose eye diseases. For clinical purposes, the automatic image pro-

cessing system must also be able to handle images with pathologies. Many researchers

developed methods for detecting layers of OCT images consisting of pathologies, and

many pathologies such as drusen and geographic atrophy, hyper-reflective intra-retinal

spots were considered. A few researchers also detected a combination of those patholo-

gies called Symptomatic Exudate-Associated Derangement (SEAD). SEADs are the main

retinal manifestations of AMD, including intra-retinal fluid, sub-retinal fluid and pig-
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ment epithelial detachment [66, 117]. The active contour method, line fitting on the layer

position, peak finding, max-flow-min-cut and support vector machine are used to detect

the pathologies listed in Table 2.3. A summary of the important methods of detecting

pathologies and quantifying biomarkers is presented.

Gregori et al. [106] proposed a method for detecting three boundaries of the retinal

layers and pathologies such as a cyst and drusen, using an iterative boundary detection

algorithm. Unfortunately, this is a proprietary algorithm of Carl Zeiss Meditec and is not

described in detail. In total, 40 B-scans were used to evaluate the method, and qualitative

analysis shows ILM and RPE were identified correctly for 37 scans. They also showed the

intraclass correlation coefficient was > 0.99 for both area and volume measurements of

drusen in [143]. Farsiu et al. [130] proposed a method for detecting drusen and pigment

epithelial detachments etc. using a deformable snake algorithm and fitting fourth order

polynomial line in the RPE layer position from SD-OCT images. They evaluated on OCT

data from six AMD eyes (a total of 228 SDOCT B-scans) and qualitatively claimed good

results. They allowed semi-automatic correction using a user interface. Chen et al. [132]

also proposed a method for detecting drusen using line fitting on the RPE layer and

found more than 0.90 correlation coefficient between automatic and manual on 143 SD-

OCT volumetric images from 143 eyes in 99 patients with AMD

Dolejsi et al. [66] proposed a semi-automatic method for detecting SEADs from SD-

OCT images using a conventional Graph Cut (maximum flow) algorithm. They proposed

a regularisation energy term for Graph Cut that incorporates manual interventions. They

showed a correlation of 0.97 and reproducibility mean error was 0.12 mm3 on 25 SD-

OCT B-scans of AMD patients. Quellec et al. [131] also proposed an automatic method

for detecting SEADs including 11 boundaries of the retinal layers. It is a multi-scale

3-D graph search technique where the intensity value of the image constructs the cost

function. The overall Mean Unsigned Surface Positioning Errors of SEADs in mean ±

Standard Deviation is 5.75 ± 1.37 µm on 91 SD-OCT volumes from 39 (13 normal + 26

with pathology) subjects. Chen et al. [117] also proposed a method to detect SEADs

using a probability constraint combined graph search graph cut method. They used

approximate positions of the SEADs as candidate SEADs which were detected using a
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supervised voxel classification approach, where features of voxel are constructed with

textural, structural and positional information. In the second stage, a cost function is

defined using the surface of the layers and candidate SEADs in a graph search graph

cut method for detecting the SEADs. They showed a true positive volume fraction was

86.5% on 15 SD-OCT images of 15 subjects with exudative AMD.

Chen et al. [49] proposed a semi-automatic method for detecting geographic atro-

phy from SD-OCT images using a geometric active contour model. After estimating RPE

layer positions, a projection image was generated where the presence of GA can be iden-

tified. A geometric active contour model is used for the segmentation of the GA on the

projected images incorporating the shape and size of GA information in the edge weight

cost function. The mean overlap ratios between automatic detection and manually drawn

were 72.60% on 101 SD-OCT scans from 68 eyes in 64 patients. Hu et al. [67] proposed a

semi-automatic method to detect geographic atrophy from SD-OCT images using a level

setbased approach in the partial OCT projection image. Seed points of the GA for level

set initialisation were chosen manually and a propagation speed image was generated

by the mapping of the gradient magnitude of the partial OCT projection image. The area

correlation was 0.96 (P < 0.001) on 20 macular volumes of 20 subjects with GA.

There are many automatic methods for detecting the optic disc or ONH from OCT

images. Only a few extend their work towards cup detection and cup-disc ratio com-

putation. The first work, by Boyer et al. [90] showed the correlation coefficient between

manual and their algorithm to be 0.8 for cup diameter and 0.9 for disc diameter. Abramoff

et al. [68] detected ONH using graph search and computed the cup-disc ratio with 0.93

correlation coefficient between manual and automatic detection. Lee et al. [81] used k-

NN classifier for a cup and disc detection and found an unsigned error for the optic disc

cup of 0.076 ± 0.026 mm and the neuroretinal rim of 0.061 ± 0.026 mm.

Some biomarkers are only able to extract from OCT images such as changes of the

layer thickness, Bruch’s membrane opening minimum rim width, minimum distance

band. Our study found only Antony et al. [119] compute this parameter automatically.

They reported that their measurements are not significantly different from the manual

computation. Tan et al. [96] showed the thickness of the retinal layers as biomarkers for



52 Background

the retinal diseases where Peak intensity finding performed layer segmentation. They

performed disease correlation with the layer thickness and showed a reduction in thick-

ness of inner retinal layers in glaucoma patients tracing 310 eligible eyes from 178 partic-

ipants.

2.7.7 Classification model for diseased eye detection

Another interesting field of the OCT image processing is to classify normal and different

eye diseased patients. Most of the research conducted features are created from image

texture analysis using template matching and Local Binary Pattern (LBP) etc. Features

are reduced using principal component analysis (PCA), Bag-of-Words, etc. Only one re-

searcher, Fraccaro et al. [26] used retinal structure information and pathologies to create

the features vector and to classify the images into normal and diseased. The classifica-

tion methods have been developed using different types of machine-learning approach.

Fraccaro et al. show Random Forest algorithms perform better than One-rule, Decision

Tree, Logistic Regression, AdaBoost, and Support vector machines.

Liu et al. [153] proposed a method for macular pathology detection in OCT images

using Local Binary Patterns (LBP) and gradient information as attributes. The method

starts by aligning and flattening the images, and then a 3-level multi-scale spatial pyra-

mid is created. From each level of the pyramid, edge and LBP histograms extracted in

each block. These histograms are used to form a global descriptor. The principal com-

ponent analysis is used to reduce the dimension of the global descriptor. Finally, a two-

class, non-linear support vector machine is used to train the system and to classify the

SD-OCT volume into normal macula and three macular pathologies (macular hole, mac-

ular edema and AMD). They used 193 volumes from 136 subjects for training the system

and 58 volumes from 37 subjects for testing the system. The cross-validation area under

the receiver operating curve (AUC) on the development dataset was 0.976, 0.931, 0939,

and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975,

for identifying normal macula, macular hole, maculae edema and AMD, respectively.

Albarrak et al. [154] proposed a decomposition-based approach for classifying the

patients into normal or AMD. After de-noising the image, they flattened the image and
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cropped an interest of volume for extracting 192 histogram bins as features using a nor-

mal LBP histogram and a Histogram of Oriented Gradients (HOG) for LBP-TOP on XY,

XZ, and YZ planes. A Bayesian network classifier was then used to categorise the sub-

jects. The proposed technique was evaluated using a ten-fold cross validation to 140

volumetric OCT images and demonstrated a promising performance with the best AUC

value of 94.4%.

Srinivasan et al. [1] proposed a classification method to distinguish DME, AMD and

normal SD-OCT volumes. After de-noising the image using the sparsity-based block

matching and 3D-filtering, the image is flattened based on an estimated RPE layer posi-

tion and the region of interest is cropped to extract features for the classifier. The features

are extracted for each slice of a volume using HOG and a linear Support Vector Machines

for classification. On a dataset of 45 patients equally subdivided into the three classes

above, this method leads to a correct classification rate of 100%, 100% and 86.67% for

DME, AMD, and normal patients, respectively.

Venhuizen et al. [155] also proposed a method for OCT images classification into

AMD and normal patients using the Bag-of-Words (BoW) models. The method selected

the key points in each B-scan from where textons are extracted around each key point.

The dimension of the texton is reduced by using the PCA and create a codebook using k-

means clustering. The obtained codebook from the training represents each OCT volume

as a feature vector occurrence histogram. Finally, Random Forest with a maximum of 100

trees is used for the classifier. The method achieved an AUC of 0.984 with a dataset of

384 (269 AMD, 115 control) OCT volumes.

Fraccaro et al. [26] proposed a method for AMD and Normal Patients classification

from SD-OCT images using various machine-learning approaches and showed Random

Forest perform best compared to all other methods. They used manual segmentation of

the drusen and other pathologies from 912 volumes of 487 patients. They tested Decision

Tree, Logistic Regression, AdaBoost, Support vector machine and Random Forest algo-

rithms. Regarding AUC, Random Forests, logistic regression and AdaBoost, they showed

a mean performance of (0.92), followed by SVM and decision trees (0.90). Lemaitre et al.

[14] proposed a method for automatic classification of patients into DME and normal



54 Background

subjects from SD-OCT volumes. Their method was based on LBP features to describe the

texture of OCT images and dictionary learning using the BoW models. The images were

divided into local patches and extracted a dense set of LBP descriptors. They extracted

3D-LBP features from the entire OCT volume and used a Random Forest classifier. They

used two datasets from two different sources and consisted of 32 (16 DME and 16 Nor-

mal) volumes from SERI and 30 (15 DME and 15 Normal) from Srinivasan et al. [1]. They

achieved approximately 87% sensitivity and 75% specificity over the two datasets. Sidibe

et al. [25] proposed a classification model for DME patients by modelling the appearance

of normal OCT images with a Gaussian Mixture Model (GMM) and detecting abnormal

OCT images as outliers. The classification of an OCT volume was based on the number of

detected outliers. They used the same dataset as Lemaitre et al. [14] and showed a better

output than both Lemaitre et al. and Venhuizen et al. [155]. They achieved a sensitivity

and a specificity of 100% and 80% on the DUKE dataset [1].

2.8 Conclusions

Retinal and Choroidal imaging have developed quite rapidly over the past few decades.

At the same time, image analysis becomes crucial in the care and progression of retinal

disease in patients. In this review, we have described current ocular imaging modalities

and their respective strengths for extracting different pathological information. We have

also described current methods of detecting layers of the retina and the choroid from

OCT images. We have also discussed OCT image processing images with pathologies,

biomarker quantification and eye diseases classification. We have reviewed the method-

ologies, datasets, accuracy of the methods based on OCT image analysis. We have also

discussed the pre-processing methods for reducing noise from the OCT image for detect-

ing the layers more accurately.



Chapter 3

2D Segmentation (2DS) Algorithm for
the Detection of Retinal Layers

This chapter presents a novel 2D segmentation method for segmenting four boundaries

of the retinal layers in the presence of the pathologies from Spectral Domain Optical Co-

herence Tomography (SD-OCT) images. This chapter is based on following publications:

Md Akter Hussain, Alauddin Bhuiyan, Andrew Turpin, Chi D Luu, R Theodore

Smith, Robyn H Guymer and Ramamohanarao Kotagiri, ”Automatic Identification of

Pathology Distorted Retinal Layer Boundaries Using SD-OCT Imaging.” IEEE Transac-

tions on Biomedical Engineering 64.7 (2017): 1638-1649.

Md Akter Hussain, Alauddin Bhuiyan and Ramamohanarao Kotagiri. ”Retinal

Cross Sectional Layer Segmentation using Optical Coherence Tomography.” 2nd Annual

Doctoral Colloquium, The University of Melbourne. 2014.

3.1 Introduction

Many researchers are increasingly using Spectral Domain Optical Coherence Tomogra-

phy (SD-OCT) images for finding new biomarkers (for example thickness of the individ-

ual retinal layers) for early detection of Age-related Macular Degeneration (AMD) risk

factors due to its ability to provide high resolution cross-sectional details of the retina

[7, 8, 156]. Extraction method of the biomarkers (thickness of layers, the presence and

size of drusen etc.) from the retinal SD-OCT image needs first the identification of the

boundaries of the retinal layers in the presence of pathology [78].The retina has ten lay-

55
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ers shown in Fig. 3.1 (top), details are in Chapter 2 (Section 2.2.1.4). The literature reviews

of retinal layers segmentation are described in (Section 2.7.3). However, currently avail-

able automatic segmentation algorithms show poor performance for the segmentation of

the retinal layers boundaries in the presence of pathology or morphological changes in

the retina due to various diseases (please see the performance evaluation section 3.7). The

morphological structure of the retinal layers such as Retinal Nerve Fiber Layer (RNFL),

Photoreceptor Layer (PL) and Retinal Pigment Epithelium (RPE) are largely affected by

the pathology of VitreoMacular Traction (VMT), drusen and OCT defined atrophy. The

associated boundaries of these layers (RNFL, PL and RPE) are ILM-RNFL, MZ-EZ, IZ-

RPE and RBC (ILM: Internal Limiting Membrane; MZ: Myoid Zone; EZ: Ellipsoid Zone;

IZ: Interdigitation Zone, RBC: the complex of the RPE/BM/Choriocapillaris). RBC is

the boundary between retina and choroid is defined by the retinal pigment epithelium

(RPE), Bruch’s Membrane (BM) and choriocapillaris [145]. Motivated by this, we have

developed a robust effective automatic method for identification of these four impor-

tant boundaries: ILM-RNFL, MZ-EZ, IZ-RPE and RBC in the presence of the pathology

as shown in Fig. 3.1 (bottom). The significance of these four retinal boundaries can be

summarised as follows:

• The change of retina thickness (ILM-RNFL to RBC) is one important biomarker for

the retinal diseases such as AMD and Glaucoma [157].

• The role of VMT as shown by red arrow in Fig. 3.2 (a) is still unclear and needs

further study [158]. Reliable identification of the ILM-RNFL boundary can also

help determining the presence and the size of VMT.

• The IZ-RPE and RBC boundaries can determine the presence, location and size of

drusen (as shown in Fig. 3.2 (red marks in a-d, f)), the most important biomarker

for the retinal diseases such as AMD [20, 159].

• The identification of MZ-EZ, IZ-RPE and RBC boundaries can determine the pres-

ence, location and size of the OCT defined atrophy, an important biomarker for the

retinal diseases such as advanced AMD as shown by red ellipse in Fig. 3.2 (e-f) [49].
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Retinal Layers: ILM: Internal Limiting Membrane; RNFL: Retinal Nerve Fiber Layer; GCL: Ganglion Cell Layer; IPL:
Inner Plexiform Layer; INL: Inner Nuclear Layer; OPL: Outer Plexiform Layer; ONL: Outer Nuclear Layer; ELM:
External Limiting Membrane; PL: Photoreceptor Layer; RPE: Retinal pigment epithelium.
IZ: Interdigitation Zone, a layer which is not always distinguishable even in the normal eyes.
PL is comprised with three segments and they are MZ + EZ + OSL MZ: Myoid Zone; EZ: Ellipsoid Zone; OSL: Outer
Segment Layer;
RBC: The complex of the RPE/BM/choriocapillaris;

Figure 3.1: A Colour Fundus Photography image showing the retinal surface (top left)
and a macula centre SD-OCT B-scan image (top right), a portion of the cross section across
green line (top left image), defining the layers in the SD-OCT B-scan image. Proposed
segmented boundaries are delineated in an SD-OCT image (bottom).

Figure 3.2: SD-OCT B-Scan images of the retina showing VMT, Drusen and OCT defined
atrophy: (a) depicts drusen (red ellipse) and VMT (red arrow sign); (b, c, and d) contain
drusen, distortion of layers and morphological changes in each image; (e) contains OCT
defined atrophy; the left red ellipse of (f) is OCT defined atrophy and layers loss and the
right red ellipse of (f) is drusen and layer loss.

In this chapter, we propose a robust automatic method to identify four significant

boundaries of retinal layers in the presence of three common pathologies: VMT, drusen,

and OCT defined atrophy. Our proposed algorithm uses a constrained search space
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within an SD-OCT image and boundary specific intensity profiling of pixels that are la-

belled by the Canny edge detection algorithm [160] as edge pixels in determining bound-

aries accurately. We identify the boundaries by mapping the image-processing problem

into the shortest path problem of weighted graph. In the mapped problem, the nodes of

the graph represent the edge pixels. The edge weight between the nodes is determined

using the pixel’s distance, slope similarity to a reference and non-associativity of the lay-

ers, which is designed to overcome the effect of pathology on the boundary determina-

tion. Pixels associated with the shortest path forms the boundary. We utilise the approxi-

mate locations of three reference layers (TRL) for providing guidance in determining the

optimum search space for the layer-boundaries. The boundaries are determined sequen-

tially one after the other and sequence order is ILM-RNFL, RBC, MZ-EZ and IZ-RPE.

We address the challenges associated with the identification of these layer-boundaries,

which are as follows.

• The SD-OCT images of the retina usually have noise such as additive and speckle,

which increases the difficulties of boundary identification.

• The retinal layers have varying thicknesses and generally weak contrast.

• The presence of pathologies in the retina creates unpredictable morphological changes

in the layers. As a result, the identification of boundaries becomes more difficult

and challenging. Some of the changes are as follows:

– Drusen changes the structure of layers unpredictably. For example, the RPE

and Photoreceptor layers as shown in Fig. 3.2 (a-f). Since, these layers are very

thin, it is very difficult to identify the MZ-EZ, IZ-RPE and RBC boundaries.

– The presence of OCT defined atrophy decreases the contrast between the PL

and RBC as shown in Fig. 3.2 (e, f). As a result, the boundaries become invisible

which makes it very difficult to identify the IZ-RPE and RBC boundaries.

– The ILM-RNFL boundary is hard to identify while VMT is severe (larger VMT),

since VMT has similar gradient pattern and is located immediately next to the

ILM-RNFL boundary.
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The rest of the chapter is organised as follows. The details of the proposed method

is described in Section 3.2, 3.3 and 3.4. Sections 3.5, 3.6 and 3.7 comprise the validation

methods, experimental setup and performance evaluation respectively. The novelty of

our proposed algorithm is discussed in section 3.8. Finally, Section 3.9 concludes the

chapter.

3.2 Proposed Method

Our method detects and identifies retinal ILM-RNFL, MZ-EZ, IZ-RPE and RBC bound-

aries from retinal SD-OCT B-scan images even in the presence of pathology. The steps

involved in our method are shown in Fig. 3.3. In Step 1, we reduce the additive and

speckle noise in the image by applying Wiener and Anisotropic Diffusion (AD) filters.

The benefit of using both of these filters is that they remove the impulse noise while pre-

serving the layer boundary position [161, 162]. In Step 2, we compute the approximate

locations of three reference layers (aprxTRL) using their relative positions and pixel inten-

sities. We refer to each of the aprxTRL as approximate RNFL (aprxRNFL), approximate

ONL (aprxONL) and approximate RPE (aprxRPE). Following this, the aprxTRL are used as

reference layers to detect the ILM-RNFL boundary. ILM-RNFL boundary is easily identi-

fiable compared to other boundaries due to its high contrast. For this reason, we focus on

identifying the ILM-RNFL boundary first. This also helps reducing the search space for

computing the other boundaries. In Step 4, we refine the location of aprxTRL to increase

the accuracy of identification of other layer boundaries. In Step 5, the RBC boundary is

identified using the refined aprxTRL layers. Now, the search region is reduced to within

the ILM-RNFL and RBC boundaries. This reduced search space helps us to identify the

MZ-EZ boundary more accurately (Step 6). Finally, the IZ-RPE boundary is identified by

searching between the MZ-EZ and RBC boundaries (Step 7). We note that IZ-RPE and

RBC are the most difficult boundaries of the retina due to their low contrast and potential

distortion by drusen and OCT defined atrophy. These boundary-oriented search spaces

give an excellent accuracy even in the presence of the pathology and show better per-

formance than the existing methods. We have used a stochastic optimization method,
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Figure 3.3: Flow diagram of the proposed method

Simulated Annealing (SA) [163] for approximating the global optimum for finding each

constant parameter for our method, more details are presented in Section 3.6. Details of

the boundary detection method are presented in the following subsections.

3.2.1 Noise removal by Wiener & Anisotropic Diffusion (AD) Filters

The SD-OCT images are affected by the intrinsic speckle noise, which reduces the qual-

ity of the image. Consequently, the identification of boundaries becomes very difficult

and inaccurate [10]. Image de-noising is essential for accurate tracking of the bound-

aries. A traditional linear smoothing filter (for example, Averaging or Gaussian) blur or

displace the semantically meaningful edges in the image [164] and are not suitable. Non-

linear smoothing filters (for example, Wiener Filter and Anisotropic Diffusion (AD) filter

etc.) can remove speckle and additive noise without disturbing the location of the edges.

Thus, we have applied the Wiener Filter and Anisotropic Diffusion filter for removing

noise and smoothing the image.

The Wiener Filter removes additive noise and inverts blurring simultaneously [162].

It minimises the overall mean square error in the process of inverse filtering and noise

smoothing. The orthogonality principle implies that the Wiener filter in Fourier domain

can be expressed as follows [162]:

W(x, y) =
H∗(x, y)Sxx(x, y)

|H(x, y)|2Sxx(x, y) + Snn(x, y)
(3.1)

where Sxx(x, y) and Snn(x, y) are power spectra of the original image and the addi-

tive noise respectively, H(x, y) is the blurring filter (low pass filter) and H∗(x, y) is the
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conjugate of the blurring filter.

Anisotropic Diffusion (AD) is a non-linear filter [161]. It can successfully smooth

noise while preserving the region boundaries and small structures within the image, a

very essential feature for SD-OCT B-scan image analysis. The AD filter can be expressed

as follows.

AD(x, y, t) =
δI(x, y, t)

δt

= div[g(‖∆I(x, y, t)‖)∆I(x, y, t)]
(3.2)

where t is the iteration time, ∆I(x, y, t) is the gradient image at iteration t, g(.) is the

conductance function and div is the divergence function. At t = 0, I(x, y, 0) represents

the original image.

The conductance function is chosen to satisfy two different conditions. Firstly, in a

uniform region where diffusion is maximal, limx→0g(x) = 1 must hold. Secondly, for

across edges where diffusion is minimal, limx→αg(x) = 0 must hold so that the diffusion

is stopped. We use the efficient conductance functions proposed by [161] as follows.

g(x) =
1

1 + ( x
K )

2 (3.3)

where K is the gradient magnitude threshold that controls the rate of the diffusion and

serves as a soft threshold between the image gradients as attributed to noise and edges.

In our method, we have used Wiener filter with two iterations using 3× 15 and 3× 17

windows, these window sizes were found using SA. Since images have different reso-

lution in the x and y-axis (that is, boundaries are horizontally expanded) we choose a

rectangular window size to smooth the image and reduce noise. Following this, the AD

filter is applied twice with K = 32, the numbers of first and second iteration are 8 and 3

which were determined using SA.
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Figure 3.4: The TRL approximate detection: (a) is a smooth and a cropped portion of the
retinal SD-OCT B-Scan; (b) manually delineated TRL; and (c) automatically discovered
aprxTRL by our proposed method (red, green and blue lines represent the RNFL, ONL
and RPE layer locations respectively).

3.2.2 Discover approximate locations of Three Reference Layers (aprxTRL)

To locate the boundaries, we utilise three layers (RNFL, ONL and RPE) location; two of

them (RNFL and RPE) have the highest and one of them (ONL), has the lowest intensity

in the retinal layers. The ONL layer is located in between RNFL and RPE layers as shown

in Fig. 3.4 where red, green and blue lines represent the position of RNFL, ONL and RPE

layers respectively. Due to their extremes of intensities in the retinal layers, they are

easy to locate approximately, and we refer them as three references layers (TRL) because

they are used to locate and bound the region of interest (ROI) and detect the boundaries.

Since the approximate locations of the aprxTRL are easily detectable, we use them for nar-

rowing the search space for boundary locations. For example, the ILM-RNFL boundary

should be above the aprxRNFL layer.

We discover the approximate location of the TRL using column-wise (A-scan) inten-

sity profiling. If we analyze the intensity profile of an A-scan, a low region surrounded

by two high spikes will be found as shown in Fig. 3.5 (a). The two high spikes are the

RNFL and RPE layer position and the low position is the ONL layer (red, green and blue

dots define the RNFL, ONL and RPE layer position respectively). Since the SD-OCT im-

ages have noise and pathology, the intensity profile of the A-scan does not always follow

the same pattern. The pattern can differ substantially from the case shown in Fig. 3.5 (b),

where the RNFL layer has less brightness than the non-RNFL region (VMT) marked by

a red arrow sign in the Fig. 3.5 (c). Thus simply focusing on using only the two highest

intensity values for finding the position of the RNFL and RPE layers can lead to errors.

For this reason, simultaneous consideration of the ONL layer with the RNFL and RPE
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layers can reduce the probability of error. To find the position of the RNFL, ONL and

RPE, an ideal signal is simulated and shown in Fig. 3.5 (d). This can be used as a model

to fit to the actual signal along A-scan where two spikes and the low position represent

the approximate location of the RNFL, RPE and ONL layers.

We use intensity value of those three layers pixels for finding the best fitting of the

ideal signal (as shown in Fig. 3.5 (d)) to the original signal (intensity profile) along A-

scan. The three pixels that have maximum I(RNFL) + I(RPE)− I(ONL), the intensity

of the corresponding layer pixels, are considered the best match.

Crn,rp,on = arg max
rn,rp,on

(Irn + Irp − Ion) (3.4)

This is formulated in (3.4) where C is the position of the three pixels that represent the

approximate locations of RNFL, ONL and RPE layers. In (3.4), the indexes rn, rp, and on

represent the position of RNFL, RPE and ONL layers respectively in the A-Scan. The rel-

ative position (rn < on < rp) of the layers is also incorporated in (3.4) using the indexes

for increasing accuracy. The TRL do not overlap each other rather they have varying rela-

tive distance such as RNFL and ONL layers have less distance at the center of the macula

than other region of the retina. For finding the approximate location, we apply a constant

relative distance constraint at the indexes in (3.4) which improve the robustness and ac-

curacy. We add constraints minRNO < on− rn < maxRNO; and minRPO < rp− on <

maxRPO; in the indexes of (3.4) where maxRNO, maxRPO, minRNO and minRPO are the

maximum and minimum distance of RNFL and RPE layers from ONL layer. Since the

retinal thickness is between 300 and 500 µm [9],we have chosen maxRNO = maxRPO =

200µm(≈ 50pixels) and minRNO = minRPO = 40µm(≈ 10pixels), since our dataset

contains 1pixel ≈ 4µm.

Since, we are interested in the approximate location of TRL instead of exact boundary

positions; we have more flexibility to smooth the images for getting more accurate posi-

tion of the aprxTRL. As a result, we apply a Gaussian filter on the Wiener and AD filtered

image to remove local noise. This smooth image is only used to find the aprxTRL and not

for the accurate identification of boundaries. The Gaussian filter with a 10× 10 window

and 0.5 standard deviation is applied on the image. Now using (3.4), the constraints, and
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Figure 3.5: (a) A B-scan image showing one A-scan as a green line; (b) the intensity profile
of the A-scan in (a) (green line on a); (c) is an A-scan from a different image, showing a
different pattern of intensity profile; and (d) is used to fit to the actual signal for finding
the aprxTRL. The red, green and blue circles define the RNFL, ONL and RPE layer po-
sitions respectively. The arrow sign on (c) indicates that pixels under RPE have higher
intensity than the RNFL layer.

the Gaussian smooth image (I), we find the aprxTRL. Then these aprxTRL are used to

identify the retinal layer boundaries as described in the following section.

3.2.3 General model for the identification of the four retinal layer Boundaries

The flow diagram for identifying a boundary of our proposed method is shown in Fig. 3.6

and Algorithm 1 provides the pseudo code. We utilise the aprxTRL for selecting the re-

gion of interest for any particular boundary. The aprxTRL give a smaller search space

compare the whole image, reducing errors due to noise, pathology and poor contrast.

Moreover, the pixels with peak intensity gradient (edge pixels) are considered rather than

all image pixels for the identification of boundary. This provides the robustness and in-

creases the efficiency of the method. The Canny edge detection algorithm is used to find

edge pixels [160]. Then edge pixels are filtered using the information of the boundary

position and intensity gradient [77]; for example, the edge pixels with positive intensity

gradient and above aprxRNFL layer are considered for the identification of ILM-RNFL

boundary. These selected pixels are called candidate pixels. The contiguous (within 3× 3

neighbourhood) candidate pixels are grouped based on the number of pixels (that is, if

there are more than np contiguous pixels, where np is a parameter, then split them so that

the number becomes less than np) and called a pixel-group as shown in Fig. 3.7 (f), each
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Figure 3.6: Flow diagram for identifying a boundary in our proposed method.

colour represents different pixel-group.

The end pixels of each pixel group form nodes in a graph, since we model the bound-

ary identification problem as a graph shortest path problem. Large pixel groups can be

misleading when pathology and/or noise causes mixing of two boundaries as shown in

Fig. 3.2. We can avoid such difficulties by splitting pixel groups that are longer than the

threshold np as shown in Fig. 3.7 (f). The edge weight is computed based on the node dis-

tance, slope discontinuity and non-association to the layers. The non-association value is

computed using the boundary anatomical knowledge such as the candidate pixels with

positive intensity gradient, closest and above aprxRNFL layer have high association (i.e.

low non-association) to the ILM-RNFL boundary than other pixels.

Algorithm 1 2DS Algorithm for a boundary of retinal layers

Input: B-scan Image, required already detected boundary.
Output: Boundary position.

1: Apply noise reduction filter.
2: Find the ROI using already detected boundary.
3: Apply Canny Edge Detection Algorithm and ROI to find the candidate pixels.
4: Form pixel groups and their end pixels are labels as nodes. Form fully connected

graph.
5: Compute edge weights of the graph.
6: Find the shortest path using Dijkstra’s algorithm.
7: Apply extrapolation for finding the boundary position using the pixels on the short-

est path.

In Fig. 3.7, we pictorially show the procedure of finding MZ-EZ boundary as an exam-

ple of the identification of the boundary by our proposed method. Figure 3.7 (a) shows

an SD-OCT B-scan image. The edge pixels are shown in Fig. 3.7 (b). To form candidate

pixels, edge pixels with positive intensity gradient are considered (Fig. 3.7 (c)) and the
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region of interest is defined from the aprxONL layer to the RBC (Fig. 3.7 (d)). These can-

didate pixels are grouped so that no group has more than a certain number of pixels (np)

as in Fig. 3.7 (e) (the red region of (d) magnified with pixel groups formed with np = 15).

Then the end points (black rectangle in the coloured pixels) of each pixel group form the

nodes in the graph as shown in Fig. 3.7 (e). The graph representing edge pixels-groups

of Fig. 3.7 (e) is shown in Fig. 3.7 (f). To make it is clear, Fig. 3.7 (f) shows only partial

graph and it does not show edges coming into the graph and leaving the graph to its

neighbouring edge pixel-groups; Then graph edge weights are computed by incorporat-

ing the continuity of the node position by computing distance, slope discontinuity and

non-association to a boundary. The weight computation method is described in the fol-

lowing sections. Finally, Dijkstra’s shortest path algorithm is applied to the weighted

graph to find the target boundary. We pick the pixel-groups of corresponding nodes of

the shortest path and construct the boundary as shown in Fig. 3.7 (g). Then, the remain-

ing non-connected pixels of the boundary are connected using extrapolation to produce

a continuous line. Figure 3.7 (h) shows an example of the constructed boundary in the

image.

3.3 Edge weight computation & Boundary construction

The weight of the edge between nodes a and b is computed as the sum of three compo-

nents:

ωa,b = φa,b + ψr
a,b + γa,b (3.5)

where

φa,b represents the spatial distance between pixels a and b, and is high when a and b are

not near each other in the image;

ψr
a,b represents slope between a and b relative to an already determined reference line

(r), and is high when the slope is not similar to the reference; and

γa,b represents how well the pixel group containing b matches pre-defined properties
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Figure 3.7: An example of MZ-EZ boundary detection steps: (a) the input SD-OCT B-Scan
image; (b) the edge Image after applying Canny edge detection; (c) the edge pixels having
positive intensity gradient; (d) candidate pixels; (e) a magnified image of the red region
of (d), each colour represents different pixels-groups, and black circles represent the end
pixels and node of the graph; (f) An example of the fully connected graph representation
of the boundary detection problem (s and e is two special node added automatically for
defining the start and destination for the shortest path algorithm). (g) corresponding
pixel-groups obtained from the shortest path algorithm; and (h) the MZ-EZ Boundary
(yellow line).

of pixels forming the boundary, and is high when pixels do not conform to that

property.

3.3.1 The weight for the spatial distance (φa,b)

The weight for the spatial distance (φa,b) is computed as
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φa,b =



0 , if a = b

α0 , if a & b in the same pixel-group

α1|ax − bx|2+

α2|ay − by|2+ , otherwise

α3|
ay−by
ax−bx

|2

(3.6)

where α1, α2, and α3 are three parameters, and ax, ay, bx and by are the coordinate position

of nodes a and b. α0 = 0.0001 is found using SA.

The three parameters α1, α2, and α3 are linked with horizontal, vertical and diagonal

distance respectively. The values of these coefficients are defined based on prior knowl-

edge of the boundary being detected. For example, we put more cost on the vertical

(α2) and diagonal (α3) distances for the RBC as it is flat, and usually not distorted by the

pathologies we are studying.

Specific settings for α1, α2 and α3 for each boundary are discussed in Section 3.4.

3.3.2 The weight for the slope similarity to a reference (ψr
a,b)

The boundaries of the retinal layers are horizontally aligned, even though they may have

sudden deviations (spikes) due to pathology or morphological structure of the retina

(as shown in Fig. 3.2). While the spatial distance φa,b rewards pixels that are close to

each other, it may lead to boundaries that are not the same shape as their neighbouring

boundaries. The term ψr
a,b corrects for this, giving high weights to pixel pairs that have

a slope that is dissimilar to the given reference line r (for example, one of the aprxTRL

boundaries), and low weights to slopes that are similar to r. This may also have the

effect of causing a and b to incorrectly merge with another boundary, which is why we

introduce the third component γa,b described in the next section.

ψr
a,b = |(r(ax)− ay)− (r(bx)− by)| (3.7)

where r(x) is the y value of the reference boundary r at x-coordinate x.
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Figure 3.8: An example of the computation of the weight for finding the slope disconti-
nuity (ψ) .

For example, in Fig. 3.8, the red line is r and the white pixels are candidates for a

boundary. Let us choose four pixels as four nodes a (green pixel), b (red pixel), c (pink

pixel) and d (blue pixel). The vertical yellow lines represent the distance between nodes

to the r along an A-scan. In this example, the signed distance between nodes and r is

da = (r(ax)− ay) = 126− 121 = 5

db = (r(bx)− by) = 4,

dc = (r(cx)− cy) = −4 and

dd = (r(dx)− dy) = −5.

Hence, ψr
a,b = |da − db| = 1,

ψr
a,c = |da − dc| = 9 and

ψr
c,d = |dc − dd| = 1,

so the two segments joining ab and cd are closer in slope to r than the segment ac, as

expected.

3.3.3 The weight for the layer’s non-associativity (γa,b)

For each boundary, one or more properties of pixel groups for that boundary is defined.

In particular, a count of the pixels that satisfy the properties is used to decrease the weight

of the edge between a and b. For example, pixels in the ILM-RNFL boundary should be

above the aprxRNFL layer, thus when computing this boundary, a count of pixels above
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Figure 3.9: An example of the computation of the weight for finding the layer’s non-
associativity (γ).

the aprxRNFL for each pixel group is used. In general,

γa,b = ∑
i
(1 + Eb − fb,i)

pi (3.8)

where Eb is the number of pixels in the pixel-group containing node b, i is 1 to total

number of property, fb,i is the number of associated pixels for ith property in the pixel

group containing node b, and pi is a parameter to control the influence of each property.

Thus when many pixels satisfy property i, fb,i is close to Eb and so the total weight is near

to zero. On the other hand, when there are not many pixels that satisfy property i, fb,i is

small relative to Eb and γa,b is large.

The idea is further illustrated in Fig. 3.9, which shows candidate pixels for computing

the MZ-EZ boundary. Each pixel is colour coded according to their satisfaction of Prop-

erty 1: closeness to the aprxRPE layer. For each A-scan (column in the image), there is one

white pixel that is close to the aprxRPE layer (not shown) while the green pixels do not

satisfy this property. Also shown, two pixel groups which contain four nodes a, b, c and

d (the end points of the each pixel groups is the graph node). The pixel group with nodes

a and b has Eb = 15 pixels, and fb,1 = 14 pixels satisfying Property 1 (white pixels); while

the pixel group with nodes c and d has Ec = 12 pixels, and fc,1 = 5 white pixels. Thus,

γa,b = (1 + 15− 14)p = 2p, and γa,c = (1 + 12− 5)p = 8p. No matter the value of p > 0,

it can be seen that the edge from a to b will have a lower weight than the edge from a to

c which is correct as that edge has more pixels that obey Property 1 (closer to aprxRPE).

For each boundary, properties are chosen based on the retinal structure, nearby aprx-

TRL, intensity profile and boundary gradient. We note that there could be multiple prop-

erties for a particular boundary: all are described in Section 3.4.
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Figure 3.10: The start and end nodes are specially and automatically handled in our
method. Only horizontal distances are considered to compute the edge weight for all
nodes to start and end nodes.

3.3.4 Selection of start and end node points

We create two special nodes in the graph, the start and the end, which are given x co-

ordinates of 0 and one more than the width of B-scan respectively. Each of these special

nodes is connected to all other nodes in the graph, with an edge weight of

ωa,b = (ax − bx)
2

where a is the start or end node, and b is any other node in the graph. This is shown in

Fig. 3.10, and is the same procedure for all boundaries.

3.3.5 Boundary construction from the shortest path

After adding the start and end nodes with computing their weight, shortest path between

the two is computed using Dijkstra’s shortest path algorithm [165]. Since, start and end

nodes are found automatically by our method, these two nodes are removed from the

shortest path for the final boundary. Next, the pixel-groups of the corresponding nodes

of the shortest path are extracted from the candidate pixels list and the remaining non-

connected pixels are joined using extrapolation. Since, remaining noise (the Wiener and

AD filter cannot remove noise completely) creates unwanted spikes in the boundary, we

apply Gaussian smoothing on the boundary as a final step.
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3.4 Identification of four boundaries

This section describes each boundary identification method including defining the coeffi-

cients and properties for the edge weight computation. The constant coefficients for each

boundary are determined using Simulated Annealing and more details will be found in

Section 3.6. The method of boundary identification is described according to the flow

diagram of boundary identification which is found in Fig. 3.6.

3.4.1 Identification of ILM-RNFL boundary

ILM-RNFL boundary is the first boundary to be identified by our proposed method. Se-

lect Edge pixels: Canny edge detection algorithm is applied with standard deviation
√

2

and threshold value 0.1 for finding the edge pixels. Select Candidate pixels: The edge pix-

els with non-positive intensity gradients are removed. The remaining edge pixels which

are closest and above the aprxRNFL layer are considered as the initial candidate pixels.

Pixels that are connected to initial candidate pixels are also included to form the candi-

date pixels. Select Nodes: Pixel-groups are formed from np = 25 contiguous pixels, and

end pixels of each pixel-groups are taken as the nodes in the graph. Compute Edge Weight:

The three coefficients of (3.6) for computing spatial distance (φ) for this boundary are set

to α1 = 1, α2 = log2(|ay − by|) and α3 = 2.5. The ILM-RNFL boundary does not fluctu-

ate much vertically in macula centred B-scan images, hence the higher value for α2. For

computing the weight ψr (slope similarity to reference r) using (3.7), we define r to be a

first order polynomial fitted to the aprxRNFL layer pixels. Next, layers’ non-associativity

weight (γ) is computed using two properties.

Property 1: The candidate pixels that are the closest and above the aprxRNFL layer along

each A-scan with p1 = 2.

Property 2: The candidate pixels above the aprxONL layer along A-scan with p2 = 2.

Finally, the boundary is constructed using the shortest path algorithm as described in

Sections 3.3.4 and 3.3.5.
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3.4.2 Identification of RBC boundary

We know that the RBC boundary is below the ILM-RNFL, which we just located in the

previous section, so we can restrict the search space for this boundary to between the

ILM-RNFL and the the bottom of the B-scan. This smaller search space provides us higher

confidence and accuracy on refining the aprxTRL, and allows more efficient computation.

We can also use this reduced search space to refine estimates of the aprxTRL. The previ-

ous discovery of aprxTRL could have error as shown in Fig. 3.11 (a) and 3.11 (c) due to

noise and pathology. Since these layers are the reference positions for the actual bound-

aries, the accuracy of aprxTRL directly influences the identification of boundaries. The

refined output is shown in Fig. 3.11 (b) and 3.11 (d). This refinement procedure is the

same as for the initial discovery, but one new limit condition on the index rn is added:

ILM-RNFL < rn < ILM-RNFL + δ, where δ is the approximate RNFL thickness which

is set to 100µm (≈ 25 pixels) [166]. These refined aprxTRL are used for identification of

the rest of the boundaries.

Select Edge pixels: The edge pixels are extracted using the Canny edge detection algo-

rithm. Sometimes this boundary has low contrast due to pathology, and for this reason, a

low standard deviation of 1.00 and a low threshold value of 0.01 are used for the Canny

edge detection algorithm. Select Candidate pixels: The edge pixels with negative inten-

sity gradient and located between the aprxONL layer and 500µm (≈ 125 pixels) below

the ILM-RNFL boundary (since maximum retina thickness is 500µm [9]) become candi-

date pixels. Select Nodes: Each individual pixel forms a pixel group by itself. Compute

Edge Weight: Since the RBC boundary is a relatively smooth line, the costs for the verti-

cal (α2) and diagonal distance (α3) are given higher values than the horizontal distance

(α1) in the spatial distance weight computation. So, the coefficients of (3.6) are set to

α1 = 3, α2 = |ay − by| and α3 = 5. Weight ψ (slope similarity to r) is computed using (3.7)

and r set to a first order polynomial fitted line on the aprxRPE layer. A single property is

used for computing the non-associativity weight (γ): the closest and below the aprxRPE

layer along A-scan in the candidate pixels. Value p1 is set to 2. Then the shortest path is

computed and the boundary is constructed as previously described.
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Figure 3.11: Two examples of aprxTRL refinement (shown in smoothed SD-OCT images).
(a) and (c) are the aprxTRL before refinement; (b) and (d) are the refined aprxTRL of (a)
and (c) respectively. Red, green and blue lines represent the RNFL, ONL and RPE layer
positions respectively.

3.4.3 Identification of MZ-EZ boundary

Select Edge pixels: Since the MZ-EZ boundary has high contrast, the standard deviation

and threshold values used for Canny edge detection are the same to those used for the

ILM-RNFL boundary pixel detection. Select Candidate pixels: The search space for the

identification of the MZ-EZ boundary is constrained above by the ILM-RNFL and below

by the RBC boundaries. This small search space increases the efficiency of the method

as well as the accuracy. The region of interest for the MZ-EZ boundary is defined under

the aprxONL layer and above the RBC boundary. The edge pixels with positive vertical

intensity gradient (along an A-scan) in that region of interest form the candidate pixels.

Select Nodes: The contiguous pixels where np = 15 form the pixel-group, and end pixels

of each pixel-group form the nodes of the graph. Compute Edge Weight: The coefficients

of (3.6) are set to α1 = log2(|ax − bx|), α2 = 1 and α3 = 2. The RBC boundary is used as r

to compute the slope similarity weight (ψr). There are three properties that are used for

computing the layers’ non-associativity weight, and the power (pi) is set to two for all

of them. Using this weight, the shortest path is computed and boundary is constructed.

The properties are as follows.

Property 1: Two nearest pixels along A-scan from the aprxRPE layers.

Property 2: Top most candidate pixels from Property 1 along A-scan.

Property 3: The pixels having the lowest intensity in each A-scan of the pixels from

Property 1.
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3.4.4 Identification of IZ-RPE boundary

Select Edge pixels: Since IZ-RPE boundary has low contrast, the parameters of Canny

edge detection algorithm are set to those of the RBC boundary. Select Candidate pixels:

The region of interest for the identification of IZ-RPE boundary is set using MZ-EZ as

the upper limit and RBC as the lower limit. Then the edge pixels with positive vertical

intensity gradient in that region of interest form the candidate pixels. Select Nodes: Each

pixel of the candidate pixels is in its own pixel-group, and hence all are nodes. Compute

Edge Weight: The coefficients of (3.6) are set to α1 = (|ax − bx|), α2 = 3 and α3 = 2.5.

The RBC boundary is used as r to compute the slope similarity weight ψr. Then three

properties are used for computing the layers’ non-associativity weight. The power (pi)

for all of them is set to two. These three properties are as follows.

Property 1: The candidate pixels under the MZ-EZ boundary along A-scan. If no pixel

is found in any A-scan then the pixels of the MZ-EZ boundary are chosen.

Property 2: The candidate pixels other than the pixels of the MZ-EZ boundary.

Property 3: The challenges for the abnormalities of drusen are addressed by this prop-

erty. At first, the approximate drusen areas are discovered. If the distance between

the MZ-EZ and the RBC along an A-scan is more than the distance of the aver-

age plus one standard deviation, then the A-scan is considered an approximate

drusen area. The bottom candidate pixels in each A-scan other than the approx-

imate drusen areas are selected for the third property. Then the average distance

between those selected associated pixels and RBC along the A-scan are computed.

The pixels closest to RBC boundary and above that average distance in the approx-

imate drusen area are included into the third property.

Finally, shortest path is computed and boundary is constructed as shown in Fig. 3.7 (e),

and 3.7 (f).
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3.5 Validation method

For evaluation we compared the automatically produced output images against the man-

ually segmented images (ground truth). We compute the precision of the boundary loca-

tions by computing the root mean square error (RMSE) between two different segmen-

tations. The performances of six automatic methods are reported to justify the accuracy

and robustness of the method.

RMSE is the average pixel distance of a single boundary between two different seg-

mentations. It is the most well known and reported evaluation protocol for the segmen-

tation of objects or boundary. Lower RMSE means better accuracy or performance for the

method.

RMSE(Bi,j1 , Bi,j2) =

√
∑x(Bi,j1(x)− Bi,j2(x))2

‖A-scan‖ (3.9)

where Bi,j1 is the ith boundary by the j method, Bi,j1(x) is the y-axis position of the ith

boundary at xth A-scan by the method j, ‖A-scan‖ is the total number of A-scans, and x

is taken over all A-scans.

3.6 Experimental setup

We evaluated our method on three datasets. Two of them are public datasets provided by

Chiu et al. [78] and Tian et al. (OCTRIMA-3D) [63]. The third one is an image set obtained

from Centre for Eye Research Australia (CERA). We have compared our method with five

published automatic methods: AURA tools [101,150], Iowa Reference Algorithm [8,149],

Dufour’s Software [114, 151], OCTRIMA-3D [63] and Chiu et al. [78]. Among the pub-

lished methods, AURA tools [150], Iowa Reference Algorithm [149] and Dufour’s Soft-

ware [114, 151] are publicly available. These methods need some additional information

and predefine file types to process and identify the boundaries from SD-OCT images. For

example, the Dufour software needs voxel size in mm, and AURA tools can only process

vol and img file types which are proprietary file formats. The public datasets do not have

many of those required parameters and file types. For this reason, we do not evaluate

them on the two public data sets. This exclusion does not affect our performance evalua-
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tion, as our aim is to show the robustness of our method on different datasets. Since, the

two graph-based models, Chiu et al. and OCTRIMA-3D, are not available publicly, we

have implemented their methods based on their published papers [77,78] and [63] respec-

tively for a fair comparison with other methods by a common dataset (CERA dataset).

In our method, there are several constant coefficients to be defined. There are two

window sizes (w1x, w1y, w2x, and w2y) for the Wiener filter, three parameters (K, two

iteration values it1 and it2) for the anisotropic diffusion filter, four parameters (α0, α1, α2

and α3) for (3.6), several pi for the (3.8) and two values for np (number of maximum

pixels in pixel-groups). For determining these coefficients, we have used a stochastic

optimisation method for approximating the global optimum using Simulated Annealing

(SA) [163]. This method works efficiently for finding discrete values for a large number

of parameters. Since our method needs to determine 27 parameters for 4 boundaries, SA

is used and the optimisation function used is root mean squared error. Table 3.1 shows

the lower limit, upper limit, and step size (difference between two consecutive number)

that are used for the parameter selection using SA. We have set two stopping criteria for

the SA and they are ErrorTolerance = 1e-6 and MaxIterations = 5000. The optimum values

from the SA is also reported in Table 3.1. We have used 7 B-scans of four subjects from

our local dataset for the optimisation of parameters and remaining 11 subjects are used

for the performance of evaluation purposes.

Chiu’s dataset includes 20 subjects; each one having 11 B-scans (220 B-scans in total)

with various stages of drusen and OCT defined atrophy. The images are captured by

the Bioptigen Envisu Spectral Domain Ophthalmic Imaging Systems from four different

organisations under the A2A SD-OCT study [78]. This dataset contains manual segmen-

tation of three retinal boundaries from two graders (MG1 and MG2) and their automatic

segmentation output. These three boundaries are ILM-RNFL, IZ-RPE and RBC.

The second dataset is a dataset provided by Tian et al. [63]. The dataset contains 10

Spectralis SD-OCT (Heidelberg Engineering GmbH, Heidelberg, Germany) volume data

sets from 10 healthy adult subjects in .mat file format. The original file contains 61 B-

scans per subject, but only 10 B-scans per subject are available publicly. Each subject was

scanned using IR+OCT scanning mode with a 30◦ area setting. The dimensions of the
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B-scan are 768 × 496 pixels (width × height). The axial resolution was 3.9µm and the

transversal resolution varied from 10 to 12µm. To reduce the speckle noise and enhance

the image contrast, every B-scan was the average of five aligned images. The dataset

contains eight boundary positions selected by two expert graders (MG1 and MG2) and

Tian et al.s’ automatic segmentation output.

The third dataset has been collected locally from the Centre for Eye Research Aus-

tralia (CERA) [159]. This dataset contains 15 subjects having varying stages of AMD. The

dataset has various sizes of drusen complex in nearly all B-scan images. The images are

macula centred and captured by a Heidelberg Spectralis SD-OCT scanner. Each subject

has 49 B-scans with size 1024× 496 pixels. Since manual segmentation is very time con-

suming, only the middle five B-scans for each subject has been manually segmented by

an expert grader, and checked by a second expert grader. The grader used GIMP image

editing software for delineating the targeted four retinal boundaries. The manual seg-

mentation serves as the ground truth for this dataset The performances of the methods

are discussed in the following section. Note that the bold texts in the tables show the

best accuracy for the corresponding boundary. The p-values reported in the tables are

computed using the paired sample t-test.

3.7 Results

We have computed the Root Mean Square Error (RMSE) on the results produced by our

method and the ground truths (GT) that are provided in the dataset of Chiu et al. [78].

Similarly, we have produced the RMSE for the output of Chiu et al. [78] and the same

GTs. They are reported in Table 3.2. The RMSE is also computed on Tians dataset for

our proposed method and OCTRIMA-3D (Tian et al. [63]) against manual grading with

the provided dataset and reported in Table 3.3. The tables (3.2 and 3.3) contain RMSE of

their (Chiu et al. and Tian et al.) published segmentation, our implementation of their

(Chiu et al. and Tian et al.) methods and our proposed method. The tables show that

in each boundary that is produced by our proposed method has less RMSE than our

implemented segmentation of the methods by Chiu et al. and OCTRIMA-3D, and the
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differences are statistically significant. It is clear that the results of our implementation

of the approaches of Chiu et al. and Tian et al. have lower accuracy compared with their

reported results on the same data sets. We have made every attempt to try and reproduce

their results by directly contacting the authors. Unfortunately, their software is not avail-

able due to their commercial interest, and so we could not replicate their experimental

setup and any manual tuning of parameters that they may have applied to obtain their

reported results. Although our proposed method has a slightly higher error than the

published segmentation of Chiu et al. method for all boundaries, our proposed method

is consistently low for all three datasets (reported in Table 3.2, 3.3, and 3.4). Moreover,

the RMSE errors of two boundaries (ILM-RNFL and RBC) are not significantly different

between our proposed method and inter grader in the Chiu’s dataset. For Tians dataset,

our proposed method has a slightly lower error than the published segmentation of Tian

et al. method for two boundaries and slightly higher error for other two boundaries, but

consistently low for each boundary of each of the datasets. Moreover, the RMSE errors

of three boundaries are not significantly different between our proposed method and in-

ter grader in the Tian’s dataset. The error for the IZ-RPE boundary is high compared to

all other boundaries because of its low contrast for both datasets and the distortion due

to drusen and OCT defined atrophy, is larger than any other boundaries in the Chius

dataset.

The CERA dataset is used to generate the RMSE for OCTRIMA-3D [63], Chiu et.

al. [78], Dufour’s Software [114, 151], Iowa Reference Algorithm [149], AURA tools [150]

and our proposed method. The RMSEs are reported in Table 3.4 for each boundary (four).

Chiu et al. does not identify MZ-EZ boundary and for this reason it is not reported

(shown as NA in the table). The p-values from the paired-sample t-test of the RMSE

between proposed and the other segmentation methods are always less than 0.001, re-

ported in the Table 3.4. These results show that the overall RMSE for our proposed

method is 1.57 ± 0.69 pixels where OCTRIMA-3D [63], Chiu et. al. [78], Dufour’s Soft-

ware [114,151], Iowa Reference Algorithm [149], AURA tools [150] are 16.17± 22.64, 6.66

± 9.11, 5.70 ± 10.54, 3.69 ± 2.04 and 2.29 ± 1.54 pixels respectively. For the ILM-RNFL

boundary, AURA tools shows the best accuracy. For all other boundaries, our proposed
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method shows the best accuracy.

In Fig. 3.12, we have delineated the ILM-RNFL, MZ-EZ, IZ-RPE and RBC boundaries

using red, yellow, green and magenta lines respectively using all methods. We also put

an original B-scan without any mark for the reference. The figure shows that our method

performs the closest to the manually marked image. We note that Iowa Reference algo-

rithm and AURA Tools work well for ILM-RNFL detection, but fail in detecting the other

three boundaries. We observe that Dufour’s software is better than the Iowa Reference

approach in the detection of the ILM-RNFL, MZ-EZ and RBC boundaries, while it fails

to detect IZ-RPE at the area of large drusen when the thickness of MZ decreases signifi-

cantly. Also, Chiu’s method works well on detecting ILM-RNFL and IZ-RPE, however, it

completely fails to detect the RBC boundary. The OCTRIMA-3D algorithm fails to detect

any of the boundaries for this image (Fig. 3.12) because of its dependency on the MZ-EZ

boundary, which is disrupted by drusen in this image. Thus OCTRIMA-3D fails to detect

the MZ-EZ boundary, and, consequently, the method fails to detect all other boundaries.

Our method shows excellent performance for each of the boundaries compared to other

methods.

3.8 Novelty of the proposed segmentation algorithm for detect-
ing the retinal layers

Our proposed segmentation methods for detecting the boundaries of the retinal layers

have the following novel features that help find layer boundaries very accurately.

• Narrowing the region of interest based on the approximate positions of three refer-

ence layers (TRL): The boundaries of the retinal layers are very close to each other.

Within 350 µm retina, there are at most 12 boundaries. These dense areas of bound-

aries make detecting retinal layers boundaries very challenging. The detection

of thin layers, for example, Myoid Zone (MZ) and External Limiting Membrane

(ELM), are more challenging. The absence of layers due to the anatomical structure

of the retina such as optic disc region and the effect of pathologies also make this de-

tection more challenging. Narrowing the region of interest can provide a solution
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Figure 3.12: The segmentation outputs by manual, OCTRIMA-3D, Chiu et al., Dufour
et al., Iowa Reference Algorithm, AURA Tools and our proposed method. The ILM-
RNFL, MZ-EZ, IZ-RPE and RBC boundaries are delineated using red, yellow, green and
magenta lines respectively.

to these challenges and increase the accuracy of detecting the boundaries. There

are few methods that narrow the search space using already-detected boundaries

and the estimated position of the RNFL and RPE [63]. The novelty of our robust

method for detecting approximate positions lies in using three reference layers to

narrow the region of interest. These three reference layers (TRL) are RNFL Layer,

RPE Layer and ONL Layer. We have narrowed the region of interest so that our

target boundary should be the highest contrast boundary in that region. We have

also targeted the first high contrast boundaries such as ILM-RNFL. The detection

of such boundaries first makes the method very accurate as it reduces the region of

interest for low contrast boundaries which are generally difficult to locate. These

narrowing operations increase accuracy as well as efficiency. Moreover, the detec-

tion approach using approximate positions of TRLs is another novelty. Currently,

available methods have used only maximum intensity or clustering to find approx-
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imate positions of layers for selecting the region of interest: this is prone to error

due to the presence of noise and pathologies [52,63]. We have used high smoothing

using Gaussian filter on the image and both intensity and relative distance for de-

tecting approximate position of TRL. Applying high smoothing increases accuracy

to detect the approximate positions of these reference layers because it removes the

presence of noise and the effect of pathologies. In addition, application of both the

intensity and the position improves the accuracy of the determination of the three

reference layers. Intensity-based detection alone is highly prone to error so the

combination of intensity and relative position employed in our approximate TRL

detection method helps to reduce false positions due to noise or pathologies.

• Computation of Edge Weight: The second novelty is computing robust edge weights

where image information is obtained. This information includes intensity gradient,

spatial distance between nodes, slope similarity to a reference line and association

to the properties of layers (for example, the nearest two edge pixels in a vertical di-

rection from the approximate RPE layer are more likely to be an MZ-EZ boundary).

Some methods based on graph shortest path for detecting the boundaries have con-

sidered only the intensity gradient and spatial distance in edge weight computation

[63, 77]. Our novel method of computing edge weight allows the shortest path al-

gorithm to choose the nodes in its shortest path to be the part of the boundary. This

means it can handle boundaries that are both straight and continuous or have parts

that are non-straight such as macula, optic disc, and areas that have pathologies.

The weighted Euclidean distance used in the edge weight influences the tracing

direction such as a straight line or curved boundary. The slope similarity to a ref-

erence line helps to follow the curvature of the boundary when it is affected by

pathologies such as drusen and OCT-defined atrophy. The layers non-associativity

feature helps to trace the actual boundary of thin layers and prevents it from mixing

with other boundaries.

• Selection of the graph nodes: The third novelty is selecting nodes for the graph of

detecting the boundaries of the retinal layers. In available graph methods, nodes

are formed either using all pixels or edge pixels in the region of interest for a bound-
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ary. In our proposed method, we group the candidate pixels into pixel-groups and

end pixels of the pixel-groups form the graph nodes. This process reduces the num-

ber of nodes and thus increases the efficiency of the algorithm and accuracy of the

detection.

3.9 Conclusion

In the context of clinical practice and research in ophthalmology, we need to extract thin,

elongated structures of retinal layers that can be visualised in SD-OCT images [115]. For

AMD patients, it is common to see drusen and OCT defined atrophy in these images,

and their presence increases the difficulties and challenges for correct identification of

layer boundaries. In this chapter, we have presented a robust method for identifying

four boundaries, ILM-RNFL, MZ-EZ, IZ-RPE and RBC, in the presence of pathology such

as drusen and OCT defined atrophy. The approximate locations of three reference layers

(RNFL, ONL and RPE) are used to define the region of interest for finding the boundaries.

A weighted graph representation is used for precisely identifying the boundaries, with

the weights including important features such as slope similarity to reference boundaries,

and associativity to the region of interest. The intensity gradient of nodes, morphological

properties of layers and spatial properties of the pathology are also incorporated into the

edge weight computation. The edge weight computation proposed in our method has

demonstrated robustness of the method in identifying the boundaries accurately even in

the presence of pathology.

We evaluated our method on three different datasets from different sources. The

results show a clear improvement in the identification of boundaries by our proposed

method over the other five state-of-the-art methods. Our proposed boundary identifi-

cation method can help finding the morphological changes such as the layer’s thickness

and also the layer intensity which will derive the presence, location and size of the pathol-

ogy. Using this information, ophthalmologist can perform large-scale study for finding

layer structures efficiently and accurately. This will eventually help the clinical studies

with finding new and reliable biomarkers of severity and risk of progression for early
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detection of the retinal diseases.



Chapter 4

2D Segmentation (2DS) Algorithm for
the Detection of the Choroid-Sclera

Interface

This chapter presents a novel 2D segmentation method for segmenting the choroid outer

boundary i.e. Choroid-Sclera Interface from Enhanced Depth Imaging Optical Coherence

Tomography (EDI-OCT) images. This chapter is based on the following publications:

Md Akter Hussain, Alauddin Bhuiyan, Hiroshi Ishikawa, R Theodore Smith, Joel S.

Schuman and Ramamohanarao Kotagiri. ”An Automated Method for Choroidal Thick-

ness Measurement from Enhanced Depth Imaging Optical Coherence Tomography Images”,

Computerized Medical Imaging and Graphics. ( Under review )

Kokroo, Aushim, Alauddin Bhuiyan, Md Akter Hussain, Ramamohanarao Kota-

giri, Meleha Ahmad and Theodore Smith. ”Validation of an Automated Software for

Choroidal Thickness (CTh) Measurement.” Investigative Ophthalmology and Visual Sci-

ence 57, no. 12 (2016): 5954-5954.

Md Akter Hussain, Alauddin Bhuiyan and Ramamohanarao Kotagiri. ”Automatic

Detection of Choroid-Sclera Interface in EDI-OCT Images.” 4th Annual Doctoral Collo-

quium, The University of Melbourne. 2016.

4.1 Introduction

The choroid is a vascular plexus located between the retina and the sclera (Fig. 4.1).

It provides oxygen and metabolic support to the Retinal Pigment Epithelium (RPE),

89
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outer retina, and optic nerve and absorbs the excess light penetrating the retina [40, 167].

Anatomically, the choroid can be divided into two major components: choroidal vessels

and stroma [168]. The choroidal vessels are further subdivided into five layers of increas-

ing size: Bruch’s membrane, Choriocapillaris, Sattler’s layer, Haller’s layers and Supra-

choroidea (Sch) [40]. The Choriocapillaris (Cc) is adjacent to Bruch’s membrane and is

comprised of small fenestrated capillaries, whereas the outer Sattler’s and Haller’s lay-

ers feed the Cc network. The suprachoroid (Sch) is a transitional zone between choroid

and sclera. The boundary between the choroid and the sclera is known as Choroid-Sclera

Interface (CSI). The choroidal stroma is comprised of melanocytes, fibroblasts, immune

cells, neurons, and ground substance that contribute to its thickness [40].

The qualitative and quantitative evaluation of the choroid is important in the study

of glaucoma [169], Age-related Macular Degeneration (AMD) [170], choroidal melanoma

[171], central serous chorioretinopathy [172], and many other retinal and systemic dis-

eases [80, 173]. Quigley et al. [174] proposed that a mere 50µm choroidal expansion

can increase the intraocular pressure to harmful levels in angle closure glaucoma pa-

tients. Some choroidal thinning occurs during normal aging, although, in some cases, a

pathologic condition referred to as age-related choroidal atrophy can occur [31]. There

has also been an increasing interest in investigating the correlation of choroidal thick-

ness (CTh) with the age, gender, axial length and intra-ocular pressure in healthy human

eyes [175–177]. However, lack of automation in this area makes large-scale studies chal-

lenging due to the time-consuming nature of manual measurement as well as significant

inter- and intra-grader variability. A robust, reliable and cost-effective automatic method

is essential for computing CTh in large population-based studies to better understand

the implications of CTh in the retinal health. Here, we propose to develop an automatic

method for segmenting the CSI and computing CTh from Enhanced Depth Imaging OCT

(EDI-OCT) and Swept Source OCT (SS-OCT) images.

Figure 4.1 depicts four prominent retinal layers, the choroid and sclera. The choroidal

vessels (CV) appear as the black regions surrounded by white pixels in choroidal region

of the EDI-OCT image. The Bruch’s membrane (BM) is a semi-permeable membrane

located between the Cc and the RPE. The BM and Cc are typically not distinguishable
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Retinal Layers: ILM: Internal Limiting Membrane; RNFL: Retinal Nerve Fiber Layer; ONL: Outer Nuclear Layer; RPE:
Retinal pigment epithelium.
RBC: The outer border of the RPE/ Bruch’s membrane (BM)/ Choriocapillaris Complex;CSI: Choroid Sclera Interface

Figure 4.1: Colour Fundus Photography image (left) and EDI-OCT image (middle) in a
healthy eye. B-scan mode is demonstrated by the cross sectional image corresponding to
the green line (left); A-scan mode is represented by red vertical line (right).

from the outer RPE except in pathologic state. Because of this, the term outer RPE-BM-

Choriocapillaris complex (RBC) is typically used to demarcate the separation of the retina

and choroid [145].

A number of studies have been reported semi-automatic and automatic methods of

choroidal segmentation in OCT images [65, 80, 85, 145]. These methods utilise machine

learning, graph shortest path, min-cut-max-flow, eigenvector analysis, tensor matrix and

Gaussian mixture model for finding the CSI and/or CV borders from different types of

OCT images such as polarization-sensitive OCT (PS-OCT), spectral domain OCT (SD-

OCT) and EDI-OCT [65, 80, 83, 85, 145]. We have summarised these methods in Chapter

2 (Section 2.7.4). However, these methods have limitations for the unpredictable size of

the choroid [80]. The lack of robustness and accuracy of the automatic choroid detection

(choroid is defined by the RBC and CSI boundaries) and the need of automatic algorithm

for monitoring and diagnosis of choroidal diseases motivated us to develop a robust,
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Figure 4.2: Flow diagram of the proposed method

reliable and more accurate automatic system for the measurement of CTh.

The rest of the chapter is organised as follows. The details of the proposed method

is described in Section 4.2. Section 4.3, 4.4 and 4.5 comprises the validation methods, ex-

perimental setup and performance evaluation respectively. The novelty of our proposed

algorithm is discussed in section 4.6. Finally, Section 4.7 concludes the chapter.

4.2 Proposed method

Figure 4.2 shows the flow diagram for our proposed method and Algorithm 2 provides

the pseudo code. Since the choroid is located under RBC boundary and the maximum

thickness of the choroid is approximately 350µm in healthy individuals [177], the Region

Of Interest (ROI) for the choroid is defined 400µm underneath the RBC boundary. ILM

segmentation is required for the segmentation of the RBC boundaries details in Chap-

ter 3. The method of segmenting ILM and RBC boundaries is discussed in the same

chapter. Depth-based Intensity Normalisation (DIN) methods are developed to achieve

a continuous and stable pattern of intensity for CSI. Choroidal Vessels (CV) are located

approximately using Otsu’s clustering method [178]. An anatomical knowledge-based

probability map from the DIN image is generated to find the approximate CSI. Follow-

ing that, the approximate Outer Choroidal Vessels (OCV) boundary is detected using the

approximate CV, approximate CSI and convex hull. The method of finding the RBC is ex-

plained in previous Chapter 3. The remaining steps for choroid detection and thickness

measurement are described in the following subsections.
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Algorithm 2 2DS Algorithm for the CSI

Input: B-scan Image.
Output: CSI boundary position.

1: Detect ILM-RNFL and RBC boundaries using Algorithm 1.
2: Select ROI using RBC boundary.
3: Apply noise reduction filter.
4: Apply Depth-based intensity normalisation (DIN) methods.
5: Find approximate positions of the choroidal vessels.
6: Find approximate positions of the CSI and outer choroidal vessels boundaries.
7: Compute edge weights of the graph.
8: Find the shortest path using Dijkstra’s algorithm.
9: Apply Gaussian filter for reducing zigzag from the shortest path and defined as CSI.

4.2.1 CSI boundary detection

The CSI boundary is determined by finding the ROI, followed by noise reduction and

intensity normalisation To get a similar intensity for the surface of the choroid and sclera,

depth-based intensity normalisation (DIN) is used. Choroidal vessel, the OCV and CSI

are detected approximately to allow for more accurate detection of the CSI. Each pixel

from the graph nodes and edge weight is computed using the normalised intensity and

the approximate CSI and OCV boundary. Finally, shortest path defined the CSI boundary.

The details of CSI detection are described below.

4.2.1.1 The ROI, Noise reduction & Normalisation:

Since the maximum thickness of the choroid is approximately 350µm [177], the ROI is

defined a slightly to be more, 400µm from the RBC boundary. The red to yellow line in

Fig. 4.1 is selected as ROI and Fig. 4.3 (a) shows the crop of the ROI.

The choroidal region contains many small vessels, creating edges that increase the

difficulty of CSI detection. Noise can create additional false edges. The filters which

are used to de-noise the image during the detection of the ILM-RNFL and RBC bound-

aries cannot resolve this type of noise. For this purpose, more smoothing operations are

applied to reduce false edges, thus improving the accuracy of the identification of the

CSI. Gaussian and Median filters are applied on the ROI in two steps. Before applying

these filters, the intensities that are higher than a threshold due to imaging technology



94 2D Segmentation (2DS) Algorithm for the Detection of the Choroid-Sclera Interface

Figure 4.3: (a) The region of interest of the choroid, (b) The smooth image after intensity
normalisation and (c) Depth- based intensity normalised (DIN) image

are replaced by that threshold using (4.1).

I(i, j) =


I(i, j) , if I(i, j) < thi

thi , if I(i, j) ≥ thi

(4.1)

Where thi is the threshold value and thi = µ(Ii) + 2 × α(Ii). µ(Ii) and α(Ii) are the

mean intensity and standard deviation of the image I at ith A-scan. Following this step,

a median filter of 5× 5 window is applied. The intensity of the image is normalised to

values in the range 0 to 1 for each A-scan. Gaussian filter with the window size of 5× 5

and standard deviation of 1 is then applied to further smoothen the image (Fig. 4.3 (b)).

4.2.1.2 Depth based Intensity Normalisation (DIN)

The intensities of the choroidal vessel and non-vessel pixels (referred to here as surface

pixels) are not evenly distributed, and the intensity of the sclera region is similar to the

choroidal vessel intensity (as shown in Fig. 4.3). The even distribution of the surface

pixels of the choroid and sclera improved the identification of the CSI significantly. To

allow for such normalisation, we propose a method that adapts the properties of the

OCT image capturing technology to the anatomy of choroid and sclera. OCT imaging

technology shows low intensity for the vessel and high intensity for the surface tissues.

The intensity values also become lower as the depth increases. The goal of our proposed
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depth based normalisation method is to make the intensity of the surface pixels of the

choroid and sclera stable and to make the intensity of the choroidal vessels pixels lower

than the surface pixels. Since the pixel intensity decreases with the increasing of depth,

we use the depth information to normalise the image for the CSI detection. This simple

and efficient method represents a significant novel step in our proposed method. This

DIN method is shown by (4.2).

N(i, j) =

(
∑

k
∑

l
I(i, j) > I(k, l)

)
/n (4.2)

Where I(i, j) is the intensity value of the pixel located at ith row and jth column. i ≤ k ≤

# of row and j − 1 ≤ l ≤ j + 1.n = |k| × |l|. N(i, j) is the computed depth normalised

intensity value.

The new intensity value of a pixel is the total number of lower intensity pixels located

under that pixel. The value is divided by the number of pixels located under that pixel.

This process uses multiple neighbour A-scans instead of single A-scan for the robustness

of the method over noise which is formulated in (4.2) with k=2. This operation converts

the surface pixels to a similar intensity. Figure 4.3 (c) shows an example of the output of

the DIN process.

4.2.1.3 Choroidal Vessel (CV) approximation

The Depth based Intensity Normalisation (DIN) technique helps to differentiate the sur-

face and vessel pixels, where the higher intensities are the surface and the lower intensi-

ties are the vessels. The vessel and surface pixels vary widely in the DIN image. We note

that, we want an approximate result instead of an exact detection in this phase. Therefore,

we consider the first six out of seven clusters using the Otsu method for initial approxi-

mation of CV as shown in Fig. 4.4 (a). To reduce false vessel pixels, two morphological

operations (opening and closing) are applied to the initial approximation. The morpho-

logical opening operation removed noise based on the size of the blob as shown in Fig.

4.4 (b). The closing operation recovered deleted pixels from the border of the vessels for

the opening operation as shown in Fig. 4.4 (c). These operations are applied by a disk as
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Figure 4.4: Vessel pixels after: (a) clustering; (b) morphological operation; (c) morpholog-
ical closed operation; and (d) applying dynamic distance filter.

a blob with a radius of 5.

The initial approximation of the CV could, at times, have the sclera region as shown

in Fig. 4.4 (c), represented by the white pixels in the lower part of the image. A dynamic

distance filter is applied to the initial approximation for removing the sclera region as

much as possible and output is shown in Fig. 4.4 (d). This dynamic distance filter selects

pixels as vessels based on the distance of the already classified vessel pixels along A-scan.

At first, the top 200µm initial approximated pixels are classified as approximated vessel

pixels. If the distance between the classified pixels and next initial approximated pixels is

less than a threshold value, then that next pixels are also classified as approximated vessel

pixels and computation is continued iteratively until no pixels are found as approximated

vessel pixels. That threshold value is defined dynamically based on the position of the

current pixels. For example, suppose that the black pixels in Fig. 4.5 (a) are the initial

approximated vessel pixels. There are two A-scans and each A-scan has two pixels. The

red colour pixels in Fig. 4.5 (b) are classified as approximated pixels as they are located

in the top 200µm. The distances between two pixels in the A-scan are d1 and d2 where d1

is less than the threshold value and d2 is greater than the threshold value. Then the pixel

located at d1 is included in the approximated vessel but that at d2 is not, as shown in Fig.

4.5 (c). The threshold is defined dynamically based on the position of the pixels that is
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Figure 4.5: (a) Shows black colour pixels found after clustering, red pixels in (b) and (c)
are selected as vessel after applying distance filter.

thd
i,j =

100
ei/400 µm where thd

i,j is the distance threshold for the pixel at ith row and jth A-scan

or column.

4.2.1.4 Approximate detection of CSI and OCV

The approximations of the CSI and OCV are used to manipulate the edge weight of the

graph for selecting pixels as shortest path that is more likely to be the CSI. The approxi-

mated CSI line is identified based on prior information from localising the CSI and sur-

face pixels. The cluster having the highest intensity by the Otsu method at the approx-

imation of the choroidal vessel location is classified as surface pixels, shown in Fig. 4.6

(a). The approximated CSI is used to search 100µm (i.e., ≈ 25 pixels) away from the RBC.

This explains why the pixels located in the top 100µm are removed from the surface pix-

els as shown in Fig. 4.6 (b). A probability matrix is computed based on the position of

the pixels. The hypothesis behind computing the probability matrix is that the approx-

imated CSI is more likely to be located near the maximum CTh (350µm away from the

RBC boundary). The probability value of a pixel decreases with the increasing distance

from the position of the maximum CTh. This is formulated in (4.3) and shown in Fig.

4.6 (c) in the means of intensity (high intensity means high probability and low intensity

means low probability).

P(i, j) = exp
−|i−b|

d (4.3)

Where P(i,j) is the probability value of a pixel located at the ith row and jth column, b is

the hypothesised position of the CSI boundary which is 350µm and d is the normalised

value which is set to 200µm empirically.
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Figure 4.6: (a) Surface pixels, (b) following removal of top 100 µm surface pixels, (c)
probability map for the surface pixels, (d) candidate pixels (pixels (red) with maximum
probability in each A-scan), (e) first order polynomial line on the candidate pixels (green)
(f) following removal of candidate pixels (magenta).

After computing the probability matrix, the next step is to find the approximated CSI

line. The pixels having maximum probability value in each A-scan are selected as candi-

date pixels (red pixels in Fig. 4.6 (d) for CSI). A first order polynomial line is fitted (green

line in Fig. 4.6 (e)) along these candidate pixels. Then the candidate pixels located under

that fitted line by more than a threshold along A-scan are removed and their probability

values are changed to zero so that they are not selected for the next iteration (magenta

colour pixels in Fig. 4.6 (f)). The threshold value is defined by the standard deviation
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Figure 4.7: (a) The DIN image, (b) approximate vessel, (c) approximate CSI (green line)
on the surface image (white colour), (d) approximate OCV boundary (red line), (e) ap-
proximated CSI (green line) and OCV boundary (red line) on the intensity normalised
image.

of the distance between fitted line and candidate pixels under that fitted line. This pro-

cedure is applied iteratively until no pixels are found to remove. When the product of

threshold value and the number of pixels removed is at a minimum, the first order poly-

nomial fitted line on the candidate pixels at that iteration became the approximated CSI.

Figure 4.7 shows an example of (a) the depth normalised image, (b) approximated vessel,

(c) approximated CSI (green line) in the surface image (white colour).

After finding the approximated CSI line, approximated vessel pixels located under

that approximated CSI line are removed to find a convex hull for the remaining pixels.

The outer boundary of the convex hull is smoothed using average filter with window

size of one fifth of the image width. This smooth line is defined as the OCV bound-

ary. Figure 4.7 (d) shows an example of the approximated OCV boundary (red line)

and vessels (white colour pixels). Figure 4.7 (e) shows the example of the approximated

CSI (green line) and OCV boundary (red line) on the normalised image. The proposed

method boosts the priority of those pixels located in between the approximated CSI and

OCV for becoming the actual CSI by incorporating the edge weight computation.
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4.2.1.5 Edge Weight Computation

The CSI detection problem is modelled as a graph shortest path problem where each pixel

is the graph node. The nodes are connected with 8 neighbours The vertex weight is com-

puted using (4.5) with the intensity of the smooth image and intensity and gradient of the

DIN image. The approximated CSI and outer vessel boundary also incorporated with the

weight computation as a distance factor. The weight of the nodes is decreased with in-

creasing distance from the any of the boundaries. The distance factor of the approximate

CSI and approximate choroidal vessel outer boundary from the pixels are computed us-

ing (4.4).

d f r
i,j = α× exp

(
−
(rj − i)β

δ

)
(4.4)

Where d f r
i,j is the distance factor of a node at the ith row and jth column for the reference

line (r). rj gives the position of the row for the jth column of r. α, β and δ are three coeffi-

cients to manipulate the equation as follows. The approximated CSI and outer boundary

of choroidal vessel are used as r in (4.4). The coefficient values in (4.4) for approximated

CSI (d f CSI) are α = 0.25, β = 1 and δ = 100. The coefficient value in (4.4) for approxi-

mated outer boundary of choroidal vessel (d f OCV) are assigned empirically and they are

α = 0.5, β = 1 and δ = 100.

The DIN image is normalised in the range 0 to 1 for each A-scan. The vertex weight for

the node is computed using the normalised intensity of the DIN image, gradient of that

normalised value, distance factor for the approximated CSI and outer choroidal vessel

boundary. This computation of the vertex weight is formulated by (4.5).

V = exp
(
−
(
(NDIN + GDIN)× (d f CSI + d f OCV) + 1

)
× (Is × d f pcsi)

)
(4.5)

Where NDIN and GDIN are the depth normalised intensity and its vertical gradient

value respectively, d f CSI and d f OCV are the distance factor of the approximated CSI and

OCV respectively. Is is the normalised image 0 to 1 of the after applying Gaussian and
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median filter image and d f pcsi is the distance factor for normalise intensity of the im-

age for increasing intensity near CSI boundary and decreasing the intensity of the pixel

located away from CSI. This helps the method to detect higher intensity pixels as CSI

and at the same time, avoiding pixels near the RBC that are generally higher in intensity.

d f pcsi is computed using (4.4) where r is defined by the (3× aprxOCV + aprxCSI)/4, α =

0.25, β = 2 and δ = 1000. aprxOCV is the approximated OCV and aprxCSI is the approx-

imated CSI.

The first and last column pixels are set to a predefined minimum cost so that the

shortest path algorithm could choose the first and last vertical position freely or indepen-

dently as the starting and ending of the boundary. This predefined minimum value is

set to 0.001. The edge weight of the graph is computed by (4.6). Then the shortest path

algorithm is applied where the start node is left top pixels, and the destination node is

the bottom right node.

Wu,v = Vv (4.6)

Where Wu,v is the edge weight between node u and v; Vv is the vertex weight of node v

that is computed by (4.6); u and v must be 8-connected neighbour.

The computed shortest path is formed to be the CSI. An average low-pass smoothing

filter window size of one fifth of the width of b-scan image is applied on this shortest path

for a smooth line instead of any zigzag line. This smooth line defined the CSI. Figure 4.8

shows (a) original image as a reference, (b) segmented output of the ILM-RNFL (green

line), RBC (red line) and CSI (yellow line) by our proposed method.

4.2.2 Choroidal Vessel (CV) detection

After detecting the CSI, it can still be challenging to find the CV boundaries due to unsta-

ble shape and intensity distribution. Our proposed DIN method increases the accuracy

of CV detection and increases efficiency. We have used the active contour method for

detecting the CV boundaries where seed point is generated by applying clustering on the

DIN image. The ROI for the CV boundary detection is the choroidal region that is from
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Figure 4.8: (a) Original image (b) segmented output of ILM-RNFL (green line), RBC (red
line) and CSI (yellow line) (c) segmented output of choroidal vessels (magenta lines).

the RBC boundary to CSI. First, ROI in the DIN image is clustered into two regions by

Otsu method. The cluster with the lowest intensity defined the initial CV that serves as

the seed points of the active contour. Following that, due to uneven intensity distribution

of the image, we divide the ROI into five parts along the width of the image. For each

part, edge-based active contour is used to finalise the vessel area. The active contour is

used from Matlab library function where it is iterated 300 times. Smooth factor and con-

traction bias are defined empirically by 0.1 and 0.01 respectively. Figure 4.8 (c) shows a

segmented output of the CV boundaries.

4.3 Validation method

Validation is an important step for any automated methods because to assess the accu-

racy and usability of the method. We compared our method against the manually seg-
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mented images (ground truth) and two state-of-the-art methods [80,85]. Our assessment

involves 1) Direct evaluation of the precision of the boundary locations by computing:

the Root Mean Square Error (RMSE) between two different segmentations; 2) Dice Co-

efficient (DC) between two different segmentations for direct evaluation of the precision

of the overlap of the choroidal border; 3) RMSE between two different segmentations

for direct evaluation of the precision of the CTh measurement; 4) Pearson correlation co-

efficient and Interclass Correlation Coefficient (ICC) for the choroid thickness between

two different segmentation methods. The performances of two automatic methods are

reported using these four assessment methods to justify the accuracy and robustness of

the method. The importance and computation process of the four evaluation protocols

are described below.

4.3.1 Root Mean Square Error (RMSE):

RMSE is the average pixel distance of a single boundary between two different segmen-

tations. It is well known and the most often reported way to compare segmentation of

objects or boundaries by different methods. A lower RMSE error means better accuracy

or performance for the method. The formula of computing the RMSE is (4.7).

RMSE(Bi,j1 , Bi,j2) =

√
∑x(Bi,j1(x)− Bi,j2(x))2

‖A-scan‖ (4.7)

where Bi,j1 is the ith boundary by the j method, Bi,j1(x) is the y-axis position of the ith

boundary at xth A-scan by the method j, ‖A-scan‖ is the total number of A-scans, and x

is taken over all A-scans.

4.3.2 Dice Coefficient (DC):

This is a region-oriented analysis which provides more information about classification

or identification errors. This allows us to assess whether the automatically-delineated

layer is more prone to under-segmentation or over-segmentation in comparison to man-

ual segmentation. The DC is sensitive to variations in shape, size and position. The



104 2D Segmentation (2DS) Algorithm for the Detection of the Choroid-Sclera Interface

formula for DC is shown in (4.8) where i refers to a region, j1 and j2 refer to two methods

of segmentation that they detect ith region.

DC(Reg(i,j1), Reg(i,j2)) =
2|Reg(i,j1) ∩ Reg(i,j2)|
|Reg(i,j1)|+ |Reg(i,j2)|

(4.8)

4.3.3 Interclass Correlation Coefficient (ICC):

ICC, also known as reliability coefficient, is an excellent parameter to evaluate an au-

tomatic method. A high-reliability coefficient of an automatic method represents high

accuracy. Shrout et al. [179] proposed a method to compute reliability coefficient called

ICC. Researchers have proposed six cases and our evaluation criteria are best satisfied by

the third case, in which n targets are graded by k methods without any averaging. In this

case, they proposed the ICC as follows.

ICC =
BMS− EMS

BMS + (k− 1)× EMS
(4.9)

Where BMS is a between-targets mean square; EMS is a residual sum of squares. Let

d is the data of k × n that is the ratings of n targets by k graders are stored in d. Then,

BMS and EMS are computed by the following equations.

BMS =
k×∑i (di − d)2

n− 1
(4.10)

EMS =
∑j ∑i (di,j − di)

2 − n×∑j (dj − d)2

(k− 1)× (n− 1)
(4.11)

Where d is the mean of the ratings of all graders, di is the mean of the ratings of the ith

target by all graders, dj is the mean of the ratings of all targets by the jth grader and di,j is

the rating of the ith target by the jth grader.
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4.4 Experimental setup

Our experimental setup consisted with 10 macular EDI-OCT volumes which are taken

from 7 patients (each volume has 19 B-scan, Total 190 B-scans). All patients are imaged

using EDI-OCT imaging on Heidelberg Spectralis HRA+OCT. Data is taken from patients

without a history of retinal diseases seen at a large city hospital (average age 53 years,

range 43-62). Each volume has 1021× 361× 19 voxels with 3.9µm axial resolution and dB

(image quality parameter) ranges are 20 to 39. Two expert graders from our institution

manually traced the RBC and CSI boundaries using Photoshop CS3. In addition, images

are run through CTh measurement software developed by Tian et al. [85] and Chen et

al. [80] to allow for comparison of their methods to ours. Each of the three automatic

methods is compared to the results of the two manual graders and their average. We

used several methods to compare the performance of the three systems, including RMSE

to compute error for the RBC, CSI and CTh, DC for the choroidal region, and correlation

coefficient and interclass correlation coefficient for the CTh. We have also shown the DC

for each volume for different signal strength in dB (see Fig. 4.9). We have also collected

two random SS-OCT B-scans from [180] to show the robustness of our proposed method

in diseased eye and different source of OCT imaging.

4.5 Results

Our results show better accuracy compare to the state-of-the-art automatic methods [80,

85]. RMSE for the two boundaries RBC and CSI are reported in Table 4.1. For the RBC

boundary, our proposed method shows less error than other two state-of-the-art methods

and inter-grader variability. The RMSE for the CSI shows that our proposed method is

superior to the other automatic methods. Though our proposed method has a higher

error than inter-grader variability, this difference is very small, as reported in Table 4.1.

Our method has a DC of more than 92% where other two automatic methods have less

than 65% and 70%. The RMSE, correlation coefficient (r) and ICC for the CTh also show

our proposed method is superior to the methods of Tian et al. and Chen et al. The

correlation coefficient (r) is more than 0.70 for our method but less than 0.51 for Tian et
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Figure 4.9: Dice Coefficient against dB of the volume between first manual grader and
automatic methods.

al. and less than 0.70 for Chen et al. The interclass correlation coefficient is 0.65 for our

proposed method, and less than 0.45 and 0.60 for Tian et al. and Chen et al. respectively.

In Fig. 4.9, we have shown DC of each volume where x-axis represent dB value of the

volume and y-axis represents the DC of the image. The DC from second manual grader,

Tian et al., Chen et al. and our proposed method are shown in the Fig. 4.9 where the

grading of first manual grader is used as gold standard. This figure shows the DC of our

proposed method is very near to inter grade compared to other automatic methods. It is

also clear that our method performs consistently in different signal strength.

Two B-scans from SS-OCT have been used to evaluate the performance of our pro-

posed method in different OCT type and pathology existed eyes as shown in Fig. 4.10. In

Fig. 4.10, a) contains haemorrhage pathology from an AMD patient and b) is from neo-

vascularisation patient [180]. Green, red and yellow line represent the ILM-RNFL, RBC

and CSI respectively.

4.6 Novelty of the proposed segmentation algorithm for detect-
ing the Choroid-Sclera Interface

Our proposed segmentation method for the detection of the CSI has the following novel

features that help in finding CSI very accurately.
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Figure 4.10: The output of our proposed method in the SS-OCT retinal scan presented
with pathologies.

• Depth based Intensity Normalisation technique: The choroid is the noisiest area

in the OCT image due to imaging technology and its anatomy. OCT technology

is based on backscatter light from the tissues. As a result, it is sensitive to the

depth of the tissue and loses sensitivity when increasing the depth of the tissue.

Since the choroid is located under the retina, OCT cannot capture it with as high

quality as the retina, although EDI-OCT and SS-OCT improve the quality of the

image for the choroid. The images show high inconsistency in intensity even in

the homogeneous area. The non-vessel regions of the choroid show high inconsis-

tency in intensity and it is worse under the large choroidal vessel where the CSI

boundary is located. Moreover, the presence of the large choroidal vessel increases

such challenges as it has non-uniform distribution and shape. To solve this inten-

sity variation and inconsistency, we have proposed a novel depth-based Intensity

Normalisation technique which helps to make this uneven intensity distribution to

even out the homogeneous area of the choroid and the sclera region.

• Computation of Edge weight: The second novelty in proposing the CSI detection is
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a robust method of computing edge weight where the approximate position of the

CSI and other structural information such as the outer boundary of the choroidal

vessel are incorporated. Use of the normalised image and its intensity gradient

in the edge weight computation instead of the original image has also improved

the accuracy of the method in detecting the CSI due to reducing inconsistency of

the intensities in the choroid. The combination of all these operations makes our

method robust and accurate and outperforms the state-of-the-art methods.

4.7 Conclusion

We have proposed an automated, robust and highly accurate method for the detection of

the CSI. We evaluate our method on the EDI-OCT images with different signal to noise ra-

tio which has shown similar accuracy when compared with grader. We have also shown

the robustness of our proposed method by showing segmentation output in the SS-OCT

B-scans with pathologies. Our proposed method, which is simple and novel, is a depth-

based intensity normalisation (DIN) method for analysing CTh in EDI-OCT image tech-

nology. The normalisation method reduces the challenges of low contrast and unstable

or unpredictable changes of the choroid layer by converting high distorted intensity val-

ues to a stable for the surface and vessel pixels of the choroid and sclera. This approach

provide a high robustness in the low contrast choroid. Then the Dijkstra shortest path

algorithm has been applied to detect robustly the CSI where the edge-weights are chosen

based on two approximate boundaries, the OCV and CSI. The edge weights has helped

to detect the accurate boundary in a noisy and low-contrast image by reducing the search

space and increasing the value of the probability of the pixels which are more likely to

be the CSI. We have shown our method to be far superior to the state- of-the-art methods

which has been established using several statistical tests including RMSE, DC and corre-

lation coefficient. Our method has shown a performance similar to manual segmentation

based on the inter-grader variability. The method of detecting ILM-RNFL and RBC has

performed well even in the presence of pathology reported in Section 3.7 and here CSI

detection method has performed well in the low-contrast and uneven thickness of the
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choroid. Thus, the proposed method can be deployed for large-scale studies for tracking

the progression and diagnosis of pathologies related to the choroid.



Chapter 5

3D segmentation (3DS) Algorithm for
the detection of the retinal layers and

the Choroid-Sclera Interface

This chapter presents a novel 3D segmentation method for segmenting the retinal lay-

ers through Spectral Domain Optical Coherence Tomography (SD-OCT) and Enhanced

Depth Imaging Optical Coherence Tomography (EDI-OCT) volume images, and the Choroid-

Sclera Interface from EDI-OCT images. This chapter is based on the following publica-

tion.

Md Akter Hussain, Alauddin Bhuiyan, Chi D. Luu, Robyn H. Guymer, Hiroshi

Ishikawa, Joel S. Schuman and Ramamohanarao Kotagiri. ”A robust and reliable 3D

segmentation Method for the retinal layers from Optical Coherence Tomography imaging”,

Computer Methods and Programs in Biomedicine. ( Under review )

5.1 Introduction

With advanced imaging techniques such as 3D imaging much more information is avail-

able to analyse and assess the clinical relevance such as retinal layer and choroid thick-

ness. In addition, 3D imaging can make use of more structural information of the tissues

and pathologies than can 2D images, allowing better image analysis. 3D surfaces of a

structure (e.g. retina) are scanned and segmented to detect the abnormalities for study-

ing and diagnosing diseases. For example, retinal tissue layers are analysed for the more

granular or precise grading or staging of disease, such as glaucoma and Age-related Mac-

111
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Ten Retinal Layers: ILM: Internal Limiting Membrane; RNFL: Retinal Nerve Fiber Layer; GCL: Ganglion Cell Layer;
IPL: Inner Plexiform Layer; INL: Inner Nuclear Layer; OPL: Outer Plexiform Layer; ONL: Outer Nuclear Layer; ELM:
External Limiting Membrane; PL: Photoreceptor Layer; RPE: Retinal pigment epithelium.
IZ: Interdigitation Zone, a layer which is not always distinguishable even in the normal eyes.
PL is divided into three segments: MZ + EZ + OSL; MZ: Myoid Zone; EZ: Ellipsoid Zone; OSL: Outer Segment Layer;
Five layers of the choroid: BM: Bruch’s membrane; Cc:Choriocapillaris; Sat: Sattler’s layer; Hal: Haller’s layer and Sch:
Suprachoroidea.
The outer boundary of the choroid is known as the choroid-sclera interface (CSI).

Figure 5.1: Macula centred retinal image (a) Near infra-red image; (b) Volume or 3D
reconstruction of the retina from OCT scans; (c) A B-scan image (cross-section of the
retina through the green line in Fig. a and b) and (d) Retinal Layers are delineated in a
B-scan image.

ular Degeneration (AMD), to more precisely or accurately determine the risk that some-

one has in progressing to vision loss [7,8]. A near infrared fundus image of the reitna, 3D

view of a macula centred retina from Spectral Domain Optical Coherence Tomography

(SD-OCT) B-scans, a SD-OCT B-scan and layers of the retina and the choroid are shown

in Fig. 5.1. In this chapter, we have proposed a 3D segmentation algorithm to segment

all layers of the retina and the Choroid-Sclera Interface (CSI).

There have been many attempts to obtain robust and accurate retinal image anal-
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ysis systems. Current automatic methods for retinal OCT image analysis can be cate-

gorised into three classes based on the dimensions, and they are 1) 1-Dimension (1D); 2)

2-Dimensions (2D); and 3) 3-Dimensions (3D). Hee et al. [123] have proposed an auto-

matic method of computing retinal thickness on finding peaks in 1D using kernel and

threshold in 1995. Then many other methods considered 2D and 3D segmentation. Sim-

ple thresholding schemes to more complex machine-learning approaches have been used

to detect layers in 2D and 3D [7,8,116]. The literature review of the detection of the retinal

layers and the choroid was discussed in Chapters 2 (Sections 2.7.3 and 2.7.4). However,

those methods still need improvement in terms of the accuracy of the segmentation and

detection. Our goal in this chapter is to present a robust algorithm to segment the retina

with more accuracy than the state-of-the-art methods in 3D images which can also work

for the 2D images (B-scans) if required. The benefit of using 3D over 2D segmentation is

that it increases accuracy and shows a full structure of the retina that can be visualised

effectively. Though 3D segmentation can potentially increase the complexity of the algo-

rithm, computing in parallel multiple 2D-scans can reduce the need for larger Regions

Of Interest (ROI) that is required in 2D segmentation. Already-detected boundaries in

the same or adjacent B-scans help to decrease ROI and therefore segmentation can be

achieved in real time. In addition, for clinical purposes, it is essential that retinal OCT

image analyses should be able to segment accurately even in the presence of pathology

in the image. By considering these, in this chapter, our focus is to develop a robust and

automatic 3D segmentation method for determining the boundaries of the retinal layers

and the CSI in the presence of pathology. In this chapter, we do not consider parallel

computation; however, the methods amenable to parallel processing would be a goal of

future work.

The main advantages of our approach which leads to increased accuracy, speed and

robust 3D retinal layer and CSI segmentation are as follows.

• Improved accuracy through using the neighbourhood information from adjacent

B-scans

• Improved computational efficiency through finding and using ROI from adjacent

B-scans which enables a smaller search space
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• Improved robustness of the segmentation algorithm through employing informa-

tion from adjacent B-scans even if any of the B-scans have low contrast, presence of

noise or pathology which can mislead the segmentation algorithm.

Our proposed 3D Segmentation (3DS) method relies on the notion of a Stable Refer-

ence (SR) boundary and two segmentation methods: 2D-Segmentation (2DS) and Greedy

3D Segmentation (G3DS). There are two 2DS algorithms for the retinal layers and Choroid-

Sclera Interface (CSI). They have been explained in Chapters 3 and 4. The 2DS algorithm

does not use adjacent B-scan information and the G3DS algorithm uses the adjacent B-

scan information which will be discussed in Section 5.2.2. In Chapter 3, we discussed

parameters of the graph generation for the detection of four boundaries of the retinal

layer. In this chapter, we will discuss all 12 boundaries of the retinal layer in Section

5.2.1.

If boundaries in a B-Scan determined by 2DS and G3DS are very similar, then we refer

to them as a Stable Reference (SR) boundary, which is explained in detail in Section 5.2.3.

After finding the SR boundaries, a 3DS algorithm detects the boundaries in all volumes.

The proposed method of boundary tracing is achieved by solving the graph shortest path

problem using Dijkstra’s Algorithm, where the nodes of the graph are the edge pixels of

the image found using a Canny Edge Detection (CED) algorithm and with a robust edge

weight computation for overcoming pathological disruptions in layers. The approximate

positions of three reference layers (RNFL, ONL and RPE) are used to determine ROI for

the first few retinal layer boundaries and their exact positions using the graph method

discussed in Section 5.2. Once the exact boundary of a layer is detected, this boundary

is also used to choose small ROI for determining the other boundaries. In a similar way,

when a boundary of a B-scan is detected, this boundary is used as further reference to

choose ROI for the boundaries in the adjacent B-scans for 3D segmentation. The edge

pixels found by a CED detection algorithm are formed into pixel groups based on the

length and neighbourhood of the edge pixels. The end points of each pixel group form

two graph nodes. The spatial distance between the nodes, slope similarity with respect to

the reference boundary and non-associativity (pixels not satisfying the associated layer

property) to a layer are used to estimate the graph edge weight. Then Dijkstra’s shortest
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path algorithm is used to find the shortest path that determines the boundary of the layer.

The main aspects of our 3D segmentation method are as follows.

• Mapping 3D segmentation problems as a shortest path problem in a graph.

• Avoiding complexity of 3D graph, by reducing the ROI using the adjacent B-scans

as 3D information. This is achieved by reducing the 3D problem to a 2D problem

using neighbouring pixels in the 3rd dimension simultaneously.

• Adjacent B-scans help to reduce the size of ROI for improving efficiency without

compromising accuracy.

• Graph edge weights are estimated based on the following criteria.

– The slope similarity to the reference line should decrease the cost of edge

which is more likely to be the target boundary, since reference lines are se-

lected which have the best correlation to the target boundary.

– Non-associativity of pixel group should increase the edge weight as it is less

likely to be the target boundary.

The main contributions of our method are as follows.

• An automated method for 3D segmentation of retinal layers for SD-OCT images

which is also applicable for OCT images such as EDI-OCT and SS-OCT due to sim-

ilar or higher quality of image.

• A segmentation method based on Graph algorithm that is robust despite the pres-

ence of various retinal pathologies in the images.

• Highly accurate segmentation of highest numbers of the retinal boundaries which

includes all retinal layers and subdivision of the PL layer such as MZ, EZ and OSL

which are sub-layers.

• Experiments conducted on 250 images of 10 different subjects with two subjects of

various retinal pathologies showing highly accurate segmentation.



116
3D segmentation (3DS) Algorithm for the detection of the retinal layers and the

Choroid-Sclera Interface

• Proposed segmentation is compared with five state-of-the-art retinal image seg-

mentation methods and the results show it out-performs all those methods.

The rest of the chapter is organised as follows. The proposed algorithm is explained

in Section 5.2. This section has several subsections explaining the proposed method step-

by-step. In the subsections 5.2.1, the 2D segmentation method for a B-scan for the retinal

layers’ boundaries is discussed as it is the basis of the 3D segmentation. The Greedy

3D Segmentation method and the SR Boundary Detection, a condition for using the 3D

segmentation in our proposed method, are discussed in Sections 5.2.2 and 5.2.3 respec-

tively. The 3D segmentation algorithm is explained in Section 5.2.4. Sections 5.3, 5.4 and

5.5 provide the validation method, experimental setup and results of the performance

respectively. Additional novelty of our proposed 3D segmentation algorithm over using

the proposed 2D is discussed in Section 5.6. The last section, 5.7 concludes the chapter.

5.2 The proposed boundary detection method

The tissue of the retina are continuous in adjacent B-scans when the distance between

the adjacent scans are very close. Therefore, we expect very small changes of a bound-

ary from one B-scan to the next. This information helps to get correct boundaries where

2D automatic segmentation fails for the noise or tissue structure or pathologies, but 3D

segmentation would be correct by using this neighbourhood information. This is the

main advantage of 3D segmentation over 2D segmentation for our proposed method.

That is why we have attempted to detect 12 boundaries of the retinal layers in 3D. The

boundaries are detected sequentially which is based on the anatomical structure of the

retinal layers. The method first detects the highly distinguishable boundaries compared

to the other boundaries. This approach helps to detect the low contrast boundaries in

a small ROI, since we define ROI using the already detected boundaries and adjacent

B-scans. The reduction of the ROI helps improving the accuracy and efficiency of the de-

tection even in the presence of pathologies. The sequence of the detection of boundaries

is 1) ILM-RNFL, 2) RBC, 3) MZ-EZ 4) IZ-RPE 5) OPL-ONL, 6) ONL-ELM, 7) EZ-OSL, 8)

ELM-MZ, 9) INL-OPL, 10) IPL-INL, 11) RNFL-GCL and 12) GCL-IPL. Finally the CSI is
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detected.

Our proposed 3D Segmentation (3DS) method relies on the notion of a stable bound-

ary and two segmentation methods: 2D-Segmentation (2DS) and Greedy 3D segmenta-

tion (G3DS). The finding of a SR boundary is explained in details in section 5.2.3. There

are two 2DS algorithms and they are for retinal layers (Algorithm 1) and Choroid-Sclera

Interface (Algorithm 2). They have been discussed in Chapter 3 and 4 respectively. Here,

we only discussed about the parameters of the graph generation for all 12 boundaries

as they are not discussed in Chapter 3. G3DS algorithm are discussed in the following

section 5.2.2. The 3DS algorithm is discussed in section 5.2.4.

5.2.1 2D Segmentation (2DS) algorithm for detecting the boundaries of the
retinal layers

The boundaries of the retinal layers have a smooth and similar gradient except for re-

gion where there is pathology. However, our assumption is that each boundary must

have similar gradient at most of the position in the boundary. For this reason, we use

the Canny edge detection (CED) algorithm for detecting the edge pixels of the bound-

aries with the different threshold values and standard deviation depending on the prior

knowledge of the boundary-contrast. The ROI for the boundaries is narrowing using

three reference layers (TRL: RNFL, ONL and RPE) and already detected boundaries. The

edge pixels from CED in the ROI are defined as the candidate pixels for the target bound-

ary. The candidate pixels are split into small connected parts called pixel groups. End

pixels of the pixel groups are the nodes of the graph. The edge weights between all

nodes are determined using spatial distance, slope similarity to the reference boundary

and pixels non-associativity to the layer. Finally, the Dijkstra’s shortest path algorithm is

used to define the boundary.

Since an SD-OCT image has noise from the accusation process of the image, we apply

the Anisotropic Diffusion (AD) and Wiener filters to reduce image noise with minimum

distorting the edge of boundaries. Then we will discover the TRL and following this

we will detect the boundaries. Figure 5.2 shows the flow diagram of the boundaries of

the retinal layers detection in an individual B-scan (i.e. 2DS Algorithm). First, a B-scan



118
3D segmentation (3DS) Algorithm for the detection of the retinal layers and the

Choroid-Sclera Interface

Figure 5.2: The basic flow diagram of the 2DS algorithm for the boundaries of the retinal
layers.

image is taken as input. The second step is to detect pixels which have higher gradient

intensity exceeding the given threshold value. We call these pixels edge pixels. We can

find edge pixels using CED algorithm with the threshold value and standard deviation

for smoothing the image. Since retinal boundaries have different contrast labels, we use

different threshold values and standard deviations for the different boundaries, Table

5.1 shows optimum threshold values determined using Simulated Annealing (SA) over

two subjects (details in Section 3.6). The third step is one of the most important opera-

tions in our proposed method where we select edge pixels that are in the ROI. The pixels

are called candidate pixels. The candidate pixels are grouped into small connected parts

called pixel groups. The maximum number pixels allowed in a pixel group is determined

using SA. The minimum can be one pixel. Therefore, contiguous candidate pixels could

be divided into several pixel groups due to the restrictions of the pixel-group size. End

points of the pixel-groups are defined as the nodes of the graph. We then form a fully

connected graph using these nodes. The next step is the computation of the edge weights

based on three features, which are described in the following paragraphs. After comput-

ing edge weight, the shortest path is discovered using Dijkstra’s shortest path algorithm.

Start and end nodes are added automatically and treated them specially so that short-

est path would be independent of the start and end of the boundary. The start and end

nodes are removed in the reconstruction phase of the boundaries. The pixel groups of the

corresponding shortest path nodes are used to fit a continuous line. Gaussian smoothing

is applied to find a smooth line and removes noisy effect which may still exist after noise

reduction.

We utilise three features to compute edge weights using (5.1) for the boundaries: spa-
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tial distance, slope similarity to a reference boundary and nodes non-associativity to the

boundary. For computing spatial distance, slope similarity to a reference boundary and

nodes non-associativity to the boundary, we use (5.2), (5.3) and (5.4), respectively.

ωa,b = φa,b + ψr
a,b + γa,b (5.1)

Where ωa,b is the edge weight of node a to node b that is the sum of φa,b, the weight for

the spatial distance; ψr
a,b, the weight for the slope discontinuity with reference line r and

γa,b, the weight for the relevance to the layer’s boundary. Each node (a and b) represents

one two-coordinate value - (ax, ay) and (bx, by).

φa,b =



0 , if a = b

α0 , if a & b in the same pixel-group

α1|ax − bx|2+

α2|ay − by|2+ , otherwise

α3|
ay−by
ax−bx

|2

(5.2)

where α1, α2, and α3 are three coefficients , and ax, ay, bx and by are the coordinate position

of nodes a and b.

ψr
a,b = |(r(ax)− ay)− (r(bx)− by)| (5.3)

where r(x) is the y value of the reference boundary r at x-coordinate x.

γa,b = ∑
i
(1 + Eb − fb,i)

pi (5.4)

where Eb is the number of pixels in the pixel-group containing node b, i is 1 to total

number of property, fb,i is the number of associated pixels for ith property in the pixel

group containing node b, and pi is a parameter to control the influence of each property.

In Table 5.1, we have reported the parameters for detecting the boundaries of the

retinal tissue layers in the order of their detection. The constant values are defined using

SA over two subjects. The first column contains the boundary name and the second

column contains the parameter for detection of Edge pixels: Standard deviation (SD) and
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threshold (Th) for the Canny edge detection. Candidate pixels detection is reported in the

third column which is sub-divided into three columns: direction of the vertical gradient

(dg), top border and bottom border. Top and bottom border are used to define the region

of interest (ROI). Most of the times, they are simply two boundaries and sometimes they

are defined by multiple boundaries. The forth column contains the parameter of the

maximum pixel number (np) to form the pixel groups whose end points are the nodes.

The last (fifth) column is the parameter for the computation of the edge weight. It is

mainly divided into three based on their respective weights: spatial distance (φa,b), slope

similarity to a reference line (ψr
a,b) and layer non-associativity (γa,b). The column of spatial

distance (φa,b) is subdivided into three for three coefficient values. The column for the

slope similarity to a reference line (ψr
a,b) contains the name of the reference line (r). Most

of the times, the reference line is the detected boundary or approximately detected layer

position. Sometimes they are derived line from other boundaries; in these cases, we

explain them in the footnote under the table. The column of the layer non-associativity

(γa,b) holds the number of properties that are considered to compute γa,b and in all cases

pi is two, unless it is mentioned. While we find top or bottom pixels from any of the

boundaries, it is computed along A-scan.

Table 5.1: The parameters for detecting the boundaries of the retinal tissue layers.

Boundary

Name

Edge Pixels Candidate Pixels Node Compute Edge weight

SD Th dg
Top

Border

Bottom

Border
np

φa,b
ψr

a,b γa,b
α1 α2 α3

ILM-RNFL
√

2 0.1 + f1 f1 25 1 ly 2.5 f1 2, f1

RBC 1 0.01 - aprxONL f2 1 3 dy 5 f2 1, f2

MZ-EZ
√

2 0.1 + aprxONL RBC 15 lx 1 2 RBC 3, f3

IZ-RPE 1 0.01 + MZ-EZ RBC 1 dx 3 2.5 RBC 3, f4

OPL-ONL 1 0.01 - ILM-RNFL f5 5 1 1 ry f5 1, f5

ONL-ELM 0.1 0.01 + OPL-ONL f6 1 1 1 1 MZ-EZ 2, f6

EZ-OSL 1 0.01 - MZ-EZ IZ-RPE 5 1 1 ry MZ-EZ 1, f7

ELM-MZ 0.5 0.01 - ONL-ELM MZ-EZ 5 1 1 ry ONL-ELM 1, f8
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INL-OPL 0.5 0.01 + f9 f9 5 1 1 ry ILM-RNFL 1, f9

IPL-INL 1 0.01 - f10 INL-OPL 5 1 1 ry ILM-RNFL 1, f10

RNFL-GCL 2 0.01 - ILM-RNFL INL-OPL 5 1 1 ry f11 2, f11

GCL-IPL 2 0.01 + RNFL-GCL IPL-INL 5 1 1 ry ILM-RNFL 1, f12

Footnote is numbered by fn, where n is a number and all explanation of a boundary is

explained in same footnote. dy = |ay − by|, dx = |ax − bx|, ry = | ay
by
|, lg2 = log2

f1, Candidate pixels: The closest and above the approximate RNFL layer and connected

with them. r: the first order polynomial fitted line at the approximate RNFL layer pixels.

Property 1: the closest and above the approximate RNFL layer. Property 2: above the

approximate ONL (aprxONL, an approximate layer in TRL layers) layer.

f2, Bottom border is 500µm below the ILM-RNFL boundary. r: the first order polynomial

fitted to the aprxRPE (an approximate layer in TRL layer) layer pixels. Property 1: the

closest and below the approximate RPE layer.

f3, Property 1: Two nearest pixels from the approximate RPE layers. Property 2: Top most

pixels from Property 1 along A-scan. Property 3: The pixels having the lowest intensity

in each A-scan from Property 1.

f4, Property 1: The pixels under the MZ-EZ boundary and pixels of MZ-EZ in case of no

pixels under it. Property 2: The pixels except the pixels of the MZ-EZ boundary. Property

3: The challenges for the abnormalities of drusen are addressed by this property. If the

distance between the MZ-EZ and the RBC along an A-scan is more than the distance of

the average plus one standard deviation, then the A-scan is considered an approximate

drusen area. The bottom candidate pixels in each A-scan except the approximate drusen

areas are selected for the third property. Then the average distance between those se-

lected associated pixels and RBC are computed. The pixels closest to RBC boundary and

above that average distance in the approximate drusen area are included into the third

property.
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f5, Candidate pixels: we refine by removing the top most pixels where there is more than

one pixels for any A-scan as they are belongs to RNFL-GCL. The aprxONL layer position

is refined by finding the pixel position of the minimum intensity in the ROI (ILM-RNFL

to MZ-EZ) and applying a moving average filter to remove noises, referred as refONL.

The top and closest pixels from refONL in the remained candidate pixels and connected

pixels with them are formed the final candidate pixels for the OPL-ONL. Property 1: The

candidate pixels above and closest to the refONL.

f6, Bottom border is 0.5 µm below the MZ-EZ boundary. Property 1: Last candidate pixels

in each A-scan. Property 2: First candidate pixels in each A-scan.

f7, f8: Property 1: First candidate pixels in each A-scan.

f9, The negative gradient edge pixels which are located under and closest to ILM-RNFL

are defined as the approximate RNFL-GCL. The Candidate pixels is those positive gradi-

ent edge pixels which are located approximate RNFL-GCL to OPL-ONL boundary. After

that, a smooth averaging filter is applied on approximate RNFL-GCL with window size

of the one tenth of the width of the B-scan for removing noises. If any A-scan in the candi-

date pixels has no pixels then add pixels from the ILM-RNFL to approximate RNFL-GCL

region for those A-scans. If there is still no pixels for any A-scan then add OPL-ONL

boundary pixels for those A-scans. Property 1: Last candidate pixels in each A-scan.

f10, Top Border is the approximate RNFL-GCL from f9. Property 1: Last candidate pixels

in each A-scan.

f11, Two reference lines are used for this boundary to compute ψr
a,b and ψr

a,b = ψr1
a,b + ψr2

a,b

where r1 is ILM-RNFL and r2 is INL-OPL. Property 1: Last candidate pixels in each A-

scan. Property 2: First candidate pixels in each A-scan.

f12, Property 1: Last candidate pixels in each A-scan.

5.2.2 Greedy 3D Segmentation (G3DS) algorithm: Boundary detection using
adjacent B-scans

In 3D detection, adjacent B-scan (one of the immediate left or the right scans of the current

B-scan) information is used to detect the boundary in the current B-scan. The adjacent
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B-scan is called base B-scan, and the boundary is called base boundary. Pseudo code for

G3DS is presented in Algorithm 3. G3DS algorithm is similar to 2DS but it uses of base

boundary and is more efficient and accurate. The parameter used for G3DS for Canny

detection, pixel groups, noise reduction method, the detection of the edge pixels, the use

of vertical gradient, the defining of the pixel group and nodes, the spatial distance (φa,b)

for computing edge weight and the boundary construction for a boundary are same as

used in 2D detection. However, the ROI for the candidate pixels, slope continuity to a

reference ( ψr
a,b ) and layer non-associativity to a layer (γa,b) for computing edge weight

which are different and these are described below. We have used some constant values

for selecting the ROI, those values are chosen based on the resolution of the image.

Algorithm 3 G3DS Algorithm

Input: B-scan image, required already detected Boundary, base boundary.
Output: Boundary position.

1: Find the ROI using already detected boundary and base boundary.
2: If TargetBoundary = The boundary of the retinal layer then

3:
Detect the boundary using Algorithm 1 by replacing the ROI by the
current ROI.

4: EndIf
5: If TargetBoundary = The CSI then

6:
Detect the boundary using Algorithm 2 by replacing the ROI by the
current ROI and a new cost function equation 5.5.

7: EndIf

Some Notation that is used to explain the G3DS method

Bcurrent : The B boundary at the current B-scan.

Bbase : The B boundary at the base B-scan.

WR(x) = x/mean(x)

B1 − B2 : subtraction between two boundaries along A-scan.

CEW : Compute Edge Weight

ILM-RNFL

ROI : 5µm top and bottom from the base boundary.

CEW: r for ψr
a,b is the base boundary and γa,b = 0.

RBC

δ = max(3µm, |ILM-RNFLcurrent − ILM-RNFLbase|)
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ROI : δ pixels top to 5µm bottom from the base boundary.

CEW: r for ψr
a,b is the base boundary and γa,b is the vertical distance from the base bound-

ary and nodes with p = 2;

MZ-EZ

Since this boundary shows big change due to drusen, that is why, selection of ROI is dif-

ferent from other boundaries.

δ = max(|RBCcurrent − RBCbase|)

aprxONL = the pixel position of the minimum intensity between ILM-RNFL and δ pixels

beneath the base boundary.

aprxRPE = the pixel position of maximum intensity between aprxONL and RBC.

ROI = two nearest pixels from aprxRPE and under aprxONL.

R = WR(RBCcurrent − aprxRPEcurrent)

refBaseBoundary = min(base boundary, R x (RBCcurrent - base Boundary) ).

CEW: r for ψr
a,b is the refBaseBoundary and γa,b, one property (top candidate pixels);

IZ-RPE

ROI: Top two edge pixels between 1µm top of the MZ-EZ boundary and RBC boundary.

CEW: r for ψr
a,b is the base boundary and γa,b=0;

OPL-ONL

δ = max(|RBCcurrent − RBCbase|)

ROI = Top and bottom closest pixels from the aprxONL in between the ILM-RNFL and

MZ-EZ.

CEW: r for ψr
a,b is the base boundary and γa,b, one property (nearest candidate pixels from

the base boundary plus δ);

ONL-ELM

D = max(|ONL-ELMbase −MZ-EZbase|)

δ = max(|RBCcurrent − RBCbase|)

topBorder = min(base boundary - δ, MZ-EZ - D).

ROI: topBorder to 0.5µm top the MZ-EZ.

CEW: r for ψr
a,b is the MZ-EZ boundary and γa,b, two properties (Property-1: top nearest

candidate pixels from the MZ-EZ boundary and Property 2: top candidate pixels);
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EZ-OSL, ELM-MZ, INL-OPL, IPL-INL, RNFL-GCL, GCL-IPL

Since ROI for these boundaries is small, we use same method of the individual B-scan

except r of ψr
a,b which is used the corresponding base boundary.

CSI

δ = max(|RBCcurrent − RBCbase|)

D = max(|RBCcurrent − BaseBoundary|) + δ + 4µm

ROI1 = RBC to RBC+D

NI = Apply the noise reduction and normalisation of the CSI detection in ROI1 same as

individual B-scan method.

N = 0.5 ∗ exp(−(BaseBoundary + δ)/(δ ∗ 10))

ROI = δ + 3µm top to δ + 4µm bottom the base boundary. Then straighten the image so

that top pixels of the ROI become a straight line.

DIN = Apply Depth-based intensity normalisation (DIN) methods and normalise the pix-

els value 0 to 1.

Surfline = middle of the ROI minus δ

Vsl = intensity less than 0.5 in the DIN and located top to surfline.

Vslfactor = set the pixels value for vessel pixels and its top pixels to 0.5, non-vessel pixels

but top of surfline to 0.9 and all other pixels 1. For smoothing these values along A-scan,

we apply Gaussian filter trice one after another where window size is δ and standard

deviation is 1.

Cost = DINgradient + NI + vslFactor. (5.5)

5.2.3 Stable Reference (SR) boundary selection

The SR boundary is a boundary which is the same or similar and that tolerates some devi-

ation using the detection of algorithms 2DS and G3DS. We assume that if 2DS and G3DS

algorithms detect a boundary at the same position (or very close to each other) then it is

an accurate boundary. As a consequence, we can use that boundary for G3DS algorithm
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as a reference boundary for detecting the boundary in the adjacent B-scans. Since accu-

rate reference boundary leads to accurate detection and inaccurate reference boundary

leads to inaccurate detection for full volume of image. Pseudo Code for SR boundary

detection is presented in Algorithm 4. To determine SR boundary in set of continuous

B-Scans, we first compute boundary in the first B-scan using 2DS. The boundaries of the

retinal layers are detected using Algorithm 1 and the choroid-sclera interface is detected

using Algorithm 2. Then we compute same boundary in the 2nd B-Scan using 2DS and

G3DS where 1st scan’s boundary from 2DS algorithm is used as adjacent B-scan’s bound-

ary. If the percentage of absolute pixel difference between the boundaries of 2DS and

G3DS at 2nd B-scan less than ETh along A-scan is greater than PTh and standard devia-

tion of absolute pixel difference is less than STh, then they are defined as same boundaries

and 2nd B-scan is the stable boundary B-scan with the boundary from G3DS algorithm.

If the two boundaries found by 2DS and G3DS of 2nd B-Scan are not similar we repeat

the process using 2nd and 3rd B-Scans where 2nd scan’s boundary from 2DS algorithm is

used as adjacent B-scan’s boundary in G3DS algorithm for detecting the boundary at 3rd

B-scan. If the boundaries at 3rd B-scan are same then 3rd B-scan is used as SR boundary

B-scan. If such SR boundary is not found until the Kth (K = 10, gave good results) B-Scan,

we compute the root mean square error (RMSE) between each of the K boundaries de-

tected by 2DS and formed a graph where every boundary is a node and RMSE values

are edge weight. Now we find the minimum RMSE value using binary search algorithm

as a threshold, so that by applying the threshold value more than half of the nodes stay

connected. The lowest B-scan from the connected group is defined as the SR boundary

B-scan’s and its boundary from G3DS uses as the SR boundary.

The three threshold values in the decision of same boundary are ETh = 3, PTh = 85 and

STh = 3 for the boundaries of the retinal layers. Since CSI is not detected using edge

pixels and it could have a higher variation than the retinal layers that we need to accept.

That is why we allow more deviation between the boundaries to be decided as same

boundary and they are ETh = 6, PTh = 60 and STh = 6.
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Algorithm 4 Stable Reference (SR) Boundary Selection Algorithm for A Boundary

Input: Volume image.
Output: B-scan and boundary Position of the SR Boundary.

1: Detect the boundary for 1st B-scan using 2DS Algorithm. For i = 1 to 10
2: b2DSi = Detect the boundary for ith using 2DS Algorithm
3: bG3DSi = Detect the boundary for ith using G3DS Algorithm
4: If percentage of |b2DSi− bG3DSi| ≤ ETh is greater than PTh and standard deviation

of |b2DSi− bG3DSi| is less than STh then
5: SR boundary is found for ith B-scan, return i and bG3DSi.
6: EndIf
7: Ebnd = RMSE(bndi, bndj), where i, j = 1 to 10 and bnd are the boundaries of first 10

B-scans from 2DS Algorithm.
8: CNode = Find the minimum value in the Ebnd for which more than half of the nodes

(cell of the Ebnd) are connected.
9: Return the lowest B-scan position and its detected boundary position from G3DS

Algorithm from CNode.

5.2.4 3D Segmentation (3DS) algorithm

Our 3D segmentation algorithm relies on the notion of a stable boundary and two seg-

mentation methods: 2D-Segmentation (2DS) and Greedy 3D segmentation (G3DS). Pseudo

code for 3DS is presented in Algorithm 5. First, we find the position of the B-scan contain-

ing the current target SR boundary using Algorithm 4 where 2DS (Algorithm 1 and 2) and

G3DS (Algorithm 3) algorithms are used. Then the target boundary is segmented using

G3DS algorithm in the previous and succeeding B-scans from the B-scan consisting stable

boundary. Figure 5.3 shows the basic flow diagram of our proposed 3D method for de-

tecting retinal layers. In 3D, a boundary from an adjacent B-scan (in stable system that is

after detecting SR boundary) is used to detect the ROI for the target B-scan for segment-

ing the boundary. After detecting a boundary for the 3D cube/volume, we start detecting

other boundaries.

5.3 Validation method

For validation, we compared the results obtained by our proposed method against the

manually segmented images (ground truth). We also compared our method against six

state-of-the-art methods (includes two CSI segmentation methods) [62,80,85,101,114,116]



128
3D segmentation (3DS) Algorithm for the detection of the retinal layers and the

Choroid-Sclera Interface

Algorithm 5 3DS Algorithm

Input: Volume Image.
Output: Boundary position.

1: For each of the boundaries of the retina and the choroid
2: StP = find the Stable Boundary Position for the current Boundary.
3: For i =StP-1 to 1 (decreasing)
4: Bnd = Find boundaries using G3DS where adjacent B-scan is i+1.
5: EndFor
6: For i =StP+1 to end of the B-scan
7: Bnd = Find boundaries using G3DS where adjacent B-scan is i-1.
8: EndFor

Figure 5.3: The basic flow diagram of our proposed 3D segmentation.

and our proposed 2D methods of the retinal layer and CSI detection. The three auto-

matic segmentation methods for the retinal layer boundaries are publicly available, one

method [116] is collected from the authors and fifth automatic method is our 2D Segmen-

tation method. In chapter 3, we have used two more methods Chiu et al. [78] and Tian

et al. [63] as well as their dataset for the evaluation. The implementation of their meth-

ods do not show satisfactory performance in other dataset (see Section 3.7). Hence, we

ignore them in this evaluation process and consider current five state-of-the-art meth-

ods are sufficient for the evaluation. There is no method for the choroid segmentation

publicly available, thus we have implemented Tian et al. [85], and Chen et al. [80] for

the evaluation process of the choroid. We have also shown the result of our 2D method

for CSI segmentation. Our assessment involves direct evaluation of the precision of the

boundary locations by computing: the root mean square error (RMSE) between two dif-
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ferent segmentations. The performances of six state-of-the-art methods, our proposed 2D

segmentation methods and our proposed 3D method are reported using this assessment

method to compare and justify the accuracy and robustness of the methods over two

datasets (details are in next section).

5.4 Experimental setup

Our experimental setup consisted of two datasets of eight subjects’ i.e., eight macular

EDI-OCT volumes of healthy subjects and two subjects i.e., two macular SD-OCT vol-

umes of participants with intermediate AMD. Two subjects used in SA optimisation com-

putation are excluded from the evaluation process. Each volume of healthy subjects has

19 B-scans (1021× 361× 19 voxels), therefore we had a total of 152 B-scans and AMD

subjects have 49 B-scans (1024× 496× 49 voxels) per volume (total 98 B-scans) with 3.9

µm axial resolution. All Subjects are imaged using Heidelberg Spectralis HRA+OCT in

two different organisations. We have 250 manually graded B-scans of 10 subjects for eval-

uation the methods. This data is used as our Gold Standard for comparing our method

with the state-of-the-art methods. In addition, images are run through segmentation soft-

ware developed by Dufour et al. [114, 151], Iowa Reference Algorithm [62, 149], AURA

tools [101, 150], Duan et al. [116], Tian et al. [85], and Chen et al. [80]. Since the choroid

is not capture properly in the SD-OCT images of the AMD subjects, they are excluded

from the evaluation of the choroid detection. Each of the automatic methods is generated

segmentation results and computed RMSE against the manual grader. These computa-

tions allow comparing each of the method between them. The details are presented in

the result section.

5.5 Results

Our results show high accuracy compared to the currently available state-of-the-art au-

tomatic methods [62,80,85,101,114,116] and our 2D segmentation methods in the means

of RMSE. The RMSE of the retinal layers boundaries of the four state-of-the-art methods,

our 2D segmentation method and our proposed 3D method are reported in Table 5.2 and



130
3D segmentation (3DS) Algorithm for the detection of the retinal layers and the

Choroid-Sclera Interface

5.3. The RMSE The p-values from the paired-sample t-test of the RMSE between pro-

posed and the other segmentation methods are statistically significant i.e. less than 0.001

for all cases. The mean and standard deviation of the corresponding metric are reported

in the Tables. Some cells of the table are empty because the corresponding methods do

not detect those corresponding boundaries.

The RMSE of the boundary positions in Table 5.2 shows our proposed method has

significantly lower error than any other state-of-the-art methods. The overall mean of the

RMSE of the boundaries positions of the retinal layers for the Dufour et al., Iowa Refer-

ence Algorithm, AURA Tools, Duan et al. and Hussain et al. methods are 3.05, 5.50, 2.19, 4.08,

and 0.64 in pixels respectively where our proposed method has achieved 0.20, a clear im-

provement in the accuracy. We also performed interclass correlation coefficient (ICC) for

layer thicknesses. The average ICC score from our proposed method is 0.92 for all layers

where as the best ICC score achieve by the state-of-the-art methods is 0.58.

The RMSE of the boundary positions of AMD subjects are reported in Table 5.3. In

general, the result shows our proposed 3D method has better than the state-of-the-art

methods even in the presence of pathologies. The overall mean score of RMSE for our

proposed method for AMD subjects is 0.69 pixels whereas for Dufour et al., Iowa Refer-

ence Algorithm, AURA Tools, Duan et al. and Hussain et al. methods the RMSE values

are 2.03, 2.89, 1.49, 3.67, and 0.76 pixels respectively. Finally, our 3D method is three times

faster than our 2D method as 3D method needs to select much smaller ROI from adjacent

B-scans for building 3D structure.

The performance of proposed 3D method for the choroid detection is reported in

Table 5.4. Two state-of-the-art methods, Tian et al. [85] and Chen et al. [80] , and our

previous 2D method for the choroid detection are also reported against manual grading.

The lower mean and standard deviation of the RMSEs of the CSI and CTh represent

the reliability and robustness of our proposed over two state-of-the-art methods and our

previous 2D method. The mean of the RMSE of the CSI and CTh for the Tian et al. and

Chen et al. methods is more than 30 pixels, our previous 2D method has more than 10

pixels where our proposed 3D method has less than 1.50 pixels.

Figure 5.4 and 5.5 show the segmentation results by state-of-the-art methods and our
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Table 5.2: The mean and standard deviation in pixels of the RMSE for boundary position
on normal subject’s dataset.

Boundary Dufour Iowa AURA Duan Hussain Proposed
ILM-RNFL 1.62 (0.99) 3.14 (0.25) 1.87 (1.15) 0.93 (0.32) 0.95 (0.32) 0.55 (0.34)
RNFL-GCL 4.84 (3.11) 5.71 (4.08) 4.02 (1.01) 17.13 (12.01) 0.59 (0.43)
GCL-IPL 4.94 (3.45) 0.17 (0.17)
IPL-INL 3.21 (1.50) 3.95 (2.73) 2.11 (1.55) 9.36 (0.91) 0.19 (0.24)
INL-OPL 3.10 (1.17) 2.31 (1.49) 2.31 (0.50) 0.44 (0.58)
OPL-ONL 4.72 (5.22) 3.35 (0.41) 2.32 (1.61) 1.67 (0.40) 0.06 (0.10)
ONL-ELM 2.45 (1.66) 1.65 (0.70) 0.04 (0.10)
ELM-ISL 0.03 (0.04)
ISL-EZ 1.15 (0.19) 2.34 (0.17) 1.36 (1.94) 0.71 (0.14) 0.43 (0.11) 0.16 (0.22)
EZ-OSL 5.75 (0.29) 1.26 (0.62) 0.01 (0.02)
IZ-RPE 8.69 (1.24) 1.89 (1.84) 0.82 (0.09) 0.16 (0.22)
RBC 2.76 (2.91) 14.03 (1.51) 1.38 (1.91) 1.74 (0.78) 0.37 (0.15) 0.01 (0.03)
Overall 3.05 (3.04) 5.50 (3.87) 2.19 (1.68) 4.08 (6.51) 0.64 (0.31) 0.20 (0.32)

The best performance are marked by bold letter. Standard deviation is enclosed in paren-
thesis.

proposed 3D automatic method on normal and pathology existed subject respectively.

The 3D render image of a volume in Fig. 5.7 is generated by our segmented output and

Fiji, an open source image processing tools [181]. Figure 5.7(a) is a 3D render image of the

segmented 3D volume; 5.7 (b) is a 3D render image of the segmented RNFL, ONL and

RPE layers; and 5.7 (c) is a 3D render image of the segmented RNFL and Choroid. The

segmentation output on different pathology (i.e. Cyst, Lesion in the inner retina etc.) are

shown in Fig. 5.6.

In many instances, SD-OCT or EDI-OCT images may not have B-Scans as close as we

have used in our evaluation. In order to evaluate robustness of the proposed method

we removed some of the B-scans and measured estimated volume differences from the

manually graded images of the AMD subjects. The original resolution of the images

is 1024 × 49 × 496 pixels in 6 × 6 × 2 mm area at the macula centred retina. There is

122µm difference between two B-scans. We detect the layer in the volume by reducing the

number of B-scans and reconstruct the original volume using interpolation. We compute

the RMSE of the detected boundaries of layers against the manual grading and reported

in Table 5.5. Generally, errors are increased in low-resolution image, which is expected
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Table 5.3: The mean and standard deviation in pixels of the RMSE for boundary position
on AMD subject’s dataset.

Boundary Dufour Iowa AURA Duan Hussain Proposed
ILM-RNFL 0.95 (0.00) 2.12 (0.09) 0.79 (0.04) 0.79 (0.02) 0.12 (0.03) 0.09 (0.02)
RNFL-GCL 1.91 (0.25) 2.85 (0.05) 1.18 (0.06) 8.93 (1.96) 0.37 (0.19)
GCL-IPL 0.01 (0.02)
IPL-INL 2.06 (0.00) 3.11 (0.03) 1.13 (0.04) 10.88 (0.11) 0.34 (0.12)
INL-OPL 1.98 (0.32) 1.21 (0.11) 3.31 (0.75) 0.46 (0.04)
OPL-ONL 3.41 (0.28) 3.91 (0.09) 1.75 (0.04) 2.83 (0.47) 0.85 (0.06)
ONL-ELM 2.09 (0.06) 1.23 (0.13) 1.05 (0.34)
ELM-ISL 0.92 (0.55)
ISL-EZ 1.95 (0.94) 2.45 (0.03) 1.41 (0.46) 1.08 (0.02) 0.86 (0.44) 0.90 (0.50)
EZ-OSL 2.53 (0.21) 1.54 (0.56) 1.27 (0.61)
IZ-RPE 2.30 (0.26) 1.93 (0.65) 1.62 (0.49) 1.73 (0.64)
RBC 1.90 (0.51) 4.13 (1.62) 1.89 (1.28) 2.46 (1.21) 0.44 (0.58) 0.33 (0.42)
Overall 2.03 (0.83) 2.89 (0.83) 1.49 (0.57) 3.67 (3.61) 0.76 (0.68) 0.69 (0.57)

The best performance are marked by bold letter. Standard deviation is enclosed in paren-
thesis.

Table 5.4: The means and standard deviation of the evaluation protocols for CSI positions
and the thickness of the choroid.

Metric Tian et al. [85] Chen et al. [80] Our 2D method Proposed 3D method
RMSE for CSI 31.13 (16.71) 34.34 (20.98) 10.81 (15.62) 1.40 (2.08)
RMSE for CTh 29.09 (15.73) 33.53 (20.66) 10.70 (15.62) 1.40 (2.07)

The best performance are marked by bold letter. Standard deviation is enclosed in paren-
thesis.

Table 5.5: The mean and standard deviation in pixels of the RMSE for boundary position
on AMD subject’s dataset for different resolution (number of B-scans per 6µm) .

Number of B-Scans chosen
49 (all) 33 25 17 10

Overall RMSE 0.69 (0.57) 2.14 (1.53) 2.77 (1.95) 2.67 (1.28) 3.71 (1.30)
ILM-RNFL 0.09 (0.02) 0.88 (0.25) 1.27 (0.48) 1.66 (0.14) 2.71 (0.04)
RBC 0.33 (0.42) 0.79 (0.05) 0.85 (0.08) 0.95 (0.09) 1.31 (0.23)

(see Table 5.5). Though errors are worsening with decreasing the resolution of the image,

still error is low compared to the state-of-the-art methods (see Table 5.3 and 5.5).
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Figure 5.4: Segmentation result by state-of-the-art and our proposed 3D automatic meth-
ods on normal subject.

Figure 5.5: Segmentation result by state-of-the-art and our proposed 3D automatic meth-
ods on a subject with AMD.
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Figure 5.6: Some examples of detection in the presence of different pathologies using our
proposed method. The CSI is not detected in (e) and (f) due to not captured properly. (a)
and (b) In the presence of large Cyst (red arrow signs) of DME patient (c) In the presence
of small Cyst (red arrow signs) of DME patient;; (d) In the presence of small Cyst (red
arrow sign) and lesion at the inner retina (blue arrow signs) of DME patient; (e) and (f) In
the presence of vitreomacular traction (green arrow sign), drusen (pink arrow sign) and
RPE detachment (yellow arrow sign) of AMD patients. In some places of the image (f)
have lost the ONL layer properties (orange arrow sign) as well. (a, b, c, and d) Images
are collected from a public dataset (DUKE university) [1].

5.6 Novelty of the proposed 3D segmentation algorithm

In this section, we discuss the reasons why our proposed method performs well in detect-

ing the boundaries. Its main advantages are its robustness in the presence of pathologies

and high accuracy. The novelty of the proposed 2D segmentation methods of detecting

retinal layers and CSI are described in Chapter 3 and 4 respectively. Our 3D segmenta-

tion algorithm inherits those 2D segmentation algorithm advantages. In addition, our

proposed 3D segmentation algorithm has more novelty. They are described below.
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(a)

(b)

(c)

Figure 5.7: A pictorial example of our proposed method segmentation. (a) 3D render
of a volume; (b) A 3D render image of RNFL (blue), ONL (magenta) and RPE (yellow)
Layers; and (c) A 3D render image of RNFL (blue), and Choroid (green).

• Targeting first high contrast boundaries to low contrast boundaries. For example,

our first target is ILM-RNFL, one of the high contrast boundaries of the retinal layer,

and last target is GCL-IPL, one of the low contrast boundaries. The identified high

contrast boundaries are used to reduce the region of interest (ROI) for the low con-

trast boundaries. This increases the accuracy as well as the efficiency of the pro-

posed method.

• One of the novelties of 3D segmentation algorithm is in using the stable reference

boundary. It provides an accurate reference boundary for reducing the ROI at the

adjacent B-scans for detecting the boundaries to the full volume of the OCT im-

ages. The use of a stable reference boundary in 3D segmentation is one of the sig-

nificant operations that increases efficiency by reducing the ROI for detecting the
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boundaries more than does our 2D Segmentation algorithm. For this reason, 3D

segmentation algorithm is more efficient than the 2D segmentation algorithm. At

the same time, this operation selects precise ROI in the adjacent B-scans. As a re-

sult, if the B-scans suffer from heavy noises or effect of pathologies, our proposed

3D segmentation method is still able to detect the boundaries accurately.

• The use of stable reference boundary in the edge weight computation as a reference

line for slope similarity is another novelty of our 3D segmentation algorithm. This

allows the shortest path algorithm to choose the nodes in its shortest path to be that

part of the boundary which is nearly parallel to the reference boundary. As a re-

sult, boundaries of the current B-scan can be detected as nearly parallel as possible

with the boundaries of adjacent B-scans which can handle the effect of non-straight

substructures such as macula, optic disc and areas that have pathologies.

5.7 Conclusion

We have proposed an automated, robust and highly accurate method for the detection of

the all boundaries of the retinal layers and the Choroid-Sclera Interface (CSI). We have

developed 3D segmentation method by extending our previous 2D segmentation meth-

ods for efficient segmentation without compromising the accuracy. No other methods

has attempted to discover as many boundaries as ours for the retinal layers. The region

of interest selection based on adjacent B-scans and robust cost function definition makes

our proposed method efficient and accurate than the state-of the-art methods. The util-

isation of approximate three reference layers for the detection of retinal layers improves

efficiency and accuracy. On the other hand, depth based intensity normalisation helps

to find the accurate the CSI robustly. We have shown our method is superior to the state

of-the-art methods using RMSE and paired sample t-test. The lower RMSE for the bound-

aries positions of the retina even in the presence of pathologies indicate the robustness of

our method. The mean RMSE for the boundaries of the retinal layers is less than 1 pixels

for our proposed method where the state-of-the-art methods have nearly 5 pixels in the

normal subjects. The overall RMSE for the pathology existed images is increased for our
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proposed method but still much better than state-of-the-art methods. The RMSE for the

CSI position of our proposed 3D method is less than 2 pixels where two state-of-the-art

methods have more than 30 pixels. This excellent performance of our method on nor-

mal and AMD subjects indicates its suitability for identifying and tracking pathology in

a longitudinal manner and able to be used in large-scale clinical studies.





Chapter 6

The Optic Nerve Head Detection and
Eight Prominent Biomarkers

Extraction

This chapter presents a novel method for segmenting the retinal layers in the presence

of the Optic Nerve Head (ONH)/macula; detecting the ONH border and the extraction

of eight biomarkers of interest to ophthalmologists from Spectral Domain Optical Co-

herence Tomography (SD-OCT) volume images. This chapter is based on the following

publications.

Md Akter Hussain, Alauddin Bhuiyan, Chi D. Luu, Robyn H. Guymer, Hiroshi

Ishikawa, Joel S. Schuman and Ramamohanarao Kotagiri. ”Novel Automatic Ap-

proach of Computing Eight Biomarkers for Retinal and neuropathy Diseases in Macula and

ONH Centred SD-OCT Imaging”. ( To be submitted )

Md Akter Hussain, Alauddin Bhuiyan and Ramamohanarao Kotagiri. ”Disc seg-

mentation and BMO-MRW measurement from SD-OCT image using graph search and

tracing of three bench mark reference layers of retina.” Image Processing (ICIP), 2015 IEEE

International Conference on. IEEE, 2015.

Md Akter Hussain, Alauddin Bhuiyan and Ramamohanarao Kotagiri. ”Automatic

Retinal Minimum Distance Band (MDB) Computation from SD-OCT Images.” Digital

Image Computing: Techniques and Applications (DICTA), 2015 International Conference

on. IEEE, 2015.
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6.1 Introduction

Research and development of novel interventions at the early stages of eye diseases, such

as Age-related Macular Degeneration (AMD), glaucoma and Diabetic Macular Edema

(DME), are currently hampered by the lack of measurable/quantifiable biomarkers of

early diseases and their progression [16]. Such biomarkers are required to provide an as-

sessment of disease severity level and to serve as early screening or outcome measures of

its progression. As a result, many research studies have been performed and found some

biomarkers on different kinds of imaging modalities such as Colour Fundus Photogra-

phy (CFP) and Optical Coherence Tomography (OCT) [8]. For example, cup-disc ratio

and RNFL thickness are useful for glaucoma diagnosis; retina thickness and the reflec-

tivity value of Ellipsoid Zone (EZ) layer are useful for identifying AMD. OCT can obtain

the cross-sectional as well as 3-Dimensional (3D) structural information of the retina with

microscopic resolution in a non-contact and non-invasive fashion that any other imaging

modalities cannot do. The identification of early structural changes in high-resolution

OCT and its correlation with functional changes can provide novel biomarkers of early

disease [16]. To utilise the strengths of OCT such as 3D volumetric image data, substan-

tial efforts have been made to find more clinically useful biomarkers for the retinal (e.g.

AMD and DME) and neuropathy (e.g. glaucoma) diseases. Traditional methods involv-

ing human graders (qualitative or manual/semi-automatic quantitative grading) are no

longer feasible or cost-effective on large-scale datasets as they are prone to inaccuracy,

more grading variability and subjective bias. Automatic grading will allow more accu-

rate, consistent and effective measurements, and consequently give an opportunity to

gain new insight into many retinal diseases. Considering this imminent requirement, we

propose an automatic approach for extraction of retinal SD-OCT image-based biomarkers

which are described in this chapter.

These biomarkers’ computation relies on the position, shape and intensity of the

layers of the retinal tissues. Therefore, we have proposed an automatic segmentation

method for detecting retinal layers and pathologies from the Optic Nerve Head (ONH)

and macula-centred OCT images. Fig. 6.1 (a) shows: Scanning Laser Ophthalmoscopy

(SLO) of a portion of the macula-centred retina with green lines indicating where OCT
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scanning is taking place; (b) a volumetric OCT image rendering of the retina, and (c)

which is a B-scan, a slice of the cross-section of the retina along a yellow line on Fig. 6.1

(b). Each column in a B-scan (vertical orange line in Fig. 6.1 (d)) is called A-scan. Ten

layers and sub layers of the retina and the layers of the choroid are shown in Fig. 6.1

(d). The centre of the macula, called the fovea, shows a depression in the OCT image as

shown in Fig. 6.1 (c) due to the absence of the inner retinal cells [76]. The optic disc, also

known as ONH, shows a sharp fall in Fig. 6.1 (f) due to the absence of the retinal tissues.

In the optic disc, there is a pink rim with a pale centre containing nerve fibres. This is

called the neuro-retinal rim and that pale centre, devoid of neuroretinal tissue, is called

the cup. This is shown in the enface image (2D coronal projection of 3D OCT image data)

in Fig. 6.1 (e) and (f). The Hyper-Reflective intra-retinal Spots (HRS), and drusen in OCT

images are shown in Fig. 6.1 (g) and (h).

Previous OCT-based studies provided some biomarkers such as retinal layer thick-

ness, volumetric quantification of the pathologies (e.g. HRS and drusen) cup-disc ratio,

Bruch Membrane Opening Minimum Rim Width (BMO-MRW) and Minimum Distance

Band (MDB) [15–18]. The studies reported the association of the biomarkers with specific

retinal or eye diseases. For example, a cup-to-disc ratio more than 0.5 is a risk factor for

glaucoma [15]. Table 6.1 summarises the association of the biomarkers with DME, AMD

and glaucoma.

We have extended our 3D Segmentation (3DS) algorithm to detect boundaries of the

retinal layers in the presence of ONH. The graph edge-weight (spatial distance, slope con-

tinuity and layers’ non-associativity) is modified if there is a presence of ONH. The results

show that our proposed method is the better than seven other state-of-the-art methods.

We detect the ONH region automatically using the knowledge of a priori anatomical

patterns. Three patterns of the ONH are used to locate the ONH correctly. We have

also proposed a method for detecting the drusen in the OCT volumes using the abnor-

mal thickness of a composite layer called Hyper-Reflective Complex (HRC) constructed

from MZ-EZ boundary to RBC [112]. This detection of drusen allows quantifying the

volume and visualising drusen in 3D. In this chapter, we have also demonstrated novel

techniques for computing eight biomarkers introduced by the researchers and which are
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Figure 6.1: Macula centred retinal image. (a) SLO image; (b) A 3D or volume of the retina
from OCT image; (c) A B-scan image (cross-section of the retina through the green and
yellow lines in Fig. (a) and (b) respectively) and (d) Retinal Layers are delineated in a
B-scan image (e) Optic disc centred Enface image (Cup: red area; Rim: green area) (f)
A B-scan of Optic Disc centred Retina (g) A B-scan showing drusen (blue) (h) A B-scan
showing Hyper-Reflective intra-retinal Spots (HRS) (pointed by red arrow).

relevant in DME, AMD and glaucoma. To the best of our knowledge, this is the first time

a report presents a framework for computing these biomarkers automatically in the pres-

ence of pathology.

The contributions of the chapter can be summarised as follows.

1. The reflectivity value of the EZ layer is attempted by computing automatically for

the first time.

2. The first automatic method of detecting HRS.
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Table 6.1: The association of the biomarkers with DME, AMD and glaucoma.

Biomarkers Threshold level & Disease Correlation
Biomarker 1: Layer
Thickness

Retinal Nerve Fiber Layer (RNFL), Ganglion
Cell Layer (GCL) and Inner Plexiform Layer
(IPL) layers were significantly thinner in glau-
coma eye, approximately 20% less width than
age-matched normal eyes (p < 0.001) [17].
Mean retinal thickness was reduced signifi-
cantly in early AMD patients, approximately
10%(p = 0.008) than age-matched normal eyes
[19].

Biomarker 2: Quantifi-
cation value of the HRS

The presence of HRS is a characteristic finding
various stages of DME and is a key risk factor
for the development of more advanced stages
of DME [2, 18].

Biomarker 3: Quantifi-
cation value of drusen

The presence of macular large drusen (>
125µm) is a characteristic finding of early stages
of AMD and is a key risk factor for the develop-
ment of more advanced stages [20].

Biomarker 4: Cup-disc
ratio

Cup-disc ratio more than 0.5 is a risk sign of
glaucoma [15].

Biomarker 5: BMO -
Minimum Rim Width
(BMO-MRW)

The visual sensitivity of Glaucoma patients is
significantly correlated to the BMO-MRW (r =
0.32, p < 0.001), which has higher correla-
tion than RNFL Thickness [21]. BMO-MRW in
normal patients is 307± 84.3µm whereas early
glaucoma patients have 211± 60.5µm [22].

Biomarker 6: Minimum
distance Band (MDB)

The correlation coefficient between the MDB
and cup-disc ratio are −0.88 and −0.56 for
MDB value and area respectively with p < 0.05
which means MDB is highly correlated to glau-
coma like cup disc ratio [12].

Biomarker 7: Attenua-
tion Coefficient of the
RNFL

The severity label of the glaucoma increases
with decreasing the RNFL’s attenuation coef-
ficient [23]. Schoot et al. [23] found that a
significant structure-function relationship be-
tween the attenuation coefficient and the visual
field’s mean defect.

Biomarker 8: Reflectiv-
ity value of EZ layer

Early AMD patients have an average value of
1.73 and the control patients have an average
value of 2.27 [16].
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3. Fully automated retinal segmentation that works on both macular and ONH-centred

OCT volumes seamlessly.

4. Fully automated system which computes eight biomarkers.

The rest of the chapter is organised as follows. In Section 6.2, we describe the pro-

posed method and performance of the ONH border and layer detection in the ONH-

centred image. Section 6.3 describes the extraction of eight biomarkers including the seg-

mentation method of HRS and drusen, and performance measurements of the proposed

method. Finally, Section 6.4 concludes the chapter.

6.2 The ONH segmentation and Layers detection in the presence
of ONH

The ONH region is very different from other regions of the retina (Fig. 6.1 (e) vs. (c)

and (f)). There are no retinal tissue layers in the ONH region and consequently there

is a sharp fall (valley) in the ILM (Fig. 6.1 (e)). The presence of the different sizes of

the vessels makes an unpredictable pattern of the ONH region. These properties make

it difficult to segment ONH. A number of methods have been proposed for the ONH

and layer segmentation in the presence of the ONH from SD-OCT images. Among the

prominent techniques adaptive threshold techniques, graph search such as the shortest

path finding, and machine-learning approaches such as K-NN classifier, have been used

to detect the ONH [82, 148]. Some methods also utilise CFP by registering them with

OCT for detecting ONH [82]. The literature reviews of the ONH detection are presented

in Chapter 2 (Section 2.7.5). Our proposed method is based on the graph shortest path

finding for detecting the ILM layer from where we have detected the ONH by finding

inconsistencies in the RNFL, ONL and RPE layers; and intensity distribution in the enface

image of the SD-OCT B-scans of the retina.

6.2.1 Proposed segmentation method

Our proposed ONH and layer detection method works in three steps: 1) ILM-RNFL

boundary detection; 2) ONH detection, and 3) detection of other boundaries of the reti-
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nal layers. The ILM-RNFL boundary and three patterns (such as the absence of layers,

dissimilar layer positions, and intensity pattern) of the ONH in the SD-OCT image are

utilised to detect the ONH. The other boundaries of the retinal layers are then detected

without changing the original method (explained in Chapter 5) but applying the method

separately in each part of the retina - divided by the ONH region. We described the

boundaries of the retinal layers detection in Chapter 5. In this chapter, we describe the

detection method of the ILM-RNFL boundary in the presence of ONH region and the

ONH.

6.2.1.1 ILM-RNFL boundary detection in the presence of the ONH

We use the approximate positions of the three reference layers along A-scans for defin-

ing some A-scans as inconsistent positions of the layers where the differences between

two layers are three standard deviations away from the mean of their position. These

inconsistent A-scans are used to define the potential area of the ONH. Otherwise, if a

ILM-RNFL boundary in the adjacent B-scans is detected, then A-scans having ILM-RNFL

boundary position less than 200 µm (half of the maximum retinal thickness) of its 1st or-

der polynomial line are defined as a potential ONH region. The edge pixels in this po-

tential ONH region are detected by applying a high smoothing parameter (SD = 3) in

a canny edge detection algorithm. The spatial distance weight (φ(a,b)) in the graph edge

weight is modified for this region using 6.1 where φo
(a,b) is the original computation in

5 and φm
(a,b) is computed with α1 = 1, α2 = 1 and α3 = 0. Other weight parameters of

the graph edge weight remain the same. Fig. 6.2 shows an example of the procedure for

detecting the ILM-RNFL boundary.

φ(a,b) = 0.3× φo
(a,b) + 0.7× φm

(a,b), (6.1)

6.2.1.2 ONH detection

After detecting the ILM-RNFL boundary of the volume, the ONH is detected at the OCT

image volumes using three patterns of the ONH. The patterns are: the absence of the
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Figure 6.2: ILM-RNFL boundary detection in the presence of ONH. (a) an ONH-centred
B-scan; (b) positive gradient edge pixels; (c) Candidate pixels for the ILM-RNFL bound-
ary; (d) potential ONH region (red colour A-scans); (e) modified candidate pixels in the
potential ONH region after applying more smoothing operations during edge detection;
(f) The ILM-RNFL boundary at the ONH-centred SD-OCT B-scans the red line.

retinal layers; dissimilar layer positions, and dissimilar intensity pattern at the ONH

region with respect to the other areas of the retina. Fig. 6.3 shows the effect of processing

steps of the ONH detection in an OCT image. Fig. 6.3 (a) is the enface image of a portion

of the retina with ONH centre. Fig. 6.3 (b) is an OCT B-scan with ILM-RNFL boundary

delineated of the cross-section of the retina across the green line on the enface image.

The first pattern, the absence of the retinal layers, is found by the sharp fall of the ILM-

RNFL boundary. A-scans where the ILM-RNFL boundary position is less than 200µm of

the 1st order polynomial line of the ILM-RNFL boundary along A-scans, and is consid-

ered as a potential ONH region (Fig. 6.3 (d), green). If a B-scan has potential ONH region

then the other two patterns are applied to detect the exact position of the ONH.

The second pattern, dissimilar layer positions, is detected by finding the abrupt po-

sitions of the approximate ONL and RPE layers positions. There is no layers in ONH
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Figure 6.3: ONH detection. (a) Enface image of a portion of the ONH centred retina;
(b) A cross section of the retina (B-scan, along green line in (a)) with delineating ILM-
RNFL (red line); (c) Approximate RNFL layer (pink)and approximate three layers posi-
tions (RNFL: red line, ONL: green line, RPE: blue line) (d) Potential ONH regions: green
line for distance between polynomial line and ILM-RNFL boundary, yellow line for the
pattern of the unlike position of the approximate ONL and RPE, blue line for the inten-
sity disorder between the approximate ONL and RPE; (e) Detected initial positions of the
ONH (pink) and the best circle (red) fit; (f) ONH boundary(red vertical line), ILM-RNFL
(top continuous red line) and BM boundary (bottom red lines at the left and right of the
ONH).

region other than the ganglion cells and hence finding approximate ONL, and RPE lay-

ers positions gives a noisy output at the ONH region as shown in Fig. 6.3 (c - red arrow

signed regions). The A-scans where the approximate ONL and RPE layers’ position are

located at the RNFL layer are considered as abrupt positions and added to the potential

ONH region, the yellow positions in Fig. 6.3 (d). The RNFL layer is detected approx-

imately at this stage (the area of pink in Fig. 6.3 (c)) using the intensity greater than a

threshold value, computed using (2).
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thaprxRNFL = µ (Bscan(b1, b2)) , (6.2)

Where thaprxRNFL is the threshold value for computing approximate RNFL, b1 and b2 are

two boundaries (b1 is the ILM-RNFL and b2 is the 5µm below of ILM-RNFL), Bscan(b1, b2)

gives the area of the current B-scan inside of the b1 and b2; and µ(x) gives the mean value

of the x.

The third pattern, dissimilar intensity pattern, is detected using the ratio of the in-

tensities of the approximate ONL and RPE layer- positions. Generally, the intensities of

the ONL and RPE layers should be more than 50%, but at the ONH region these are not

consistent due to absence of those layers. We use this inconsistency for detecting the A-

scans in potential ONH. If the ratio is less than 10% they are added to the potential ONH

region as shown in Fig. 6.3 (d) in blue. After determining the potential locations of ONH

for all B-scans of a volume, as shown in Fig. 6.3 (e) in pink on the enface image, we find

the largest and the best-fitted circle using Hough transformation, as shown in Fig. 6.3 (e),

in red, and defined as the ONH region. Fig. 6.3 (f) shows the ONH position in the B-scan

(red vertical line) with delineating ILM-RNFL (red horizontal continuous line in the top)

and BM (two separated red horizontal lines in the bottom).

6.2.2 Results on ONH boundary detection

Dataset: We have used two macula-centred SD-OCT volumes of AMD patients with

512 × 1024 × 49 voxels per volume (total 98 B-scans) for the evaluation process. We

have also used one ONH-centred SD-OCT volume scan from a glaucoma patient with

512× 1024× 200 voxels (total 200 B-scans). The third dataset is collected from [1] of one

macula-centred SD-OCT volumes of DME patients with 496× 512× 97 voxels (total 97

B-scans). A grader has manually detected all the boundaries of the retinal layers, and

drusen from two AMD patients that serve as a gold standard. The same grader has also

manually detected ONH, ILM-RNFL, IZ-RPE and RBC boundaries for the glaucoma pa-

tient that also serves as a gold standard. The same grader has also manually marked the

HRS from DME patients and these also serve as a gold standard for measuring the accu-



6.3 Extracting the biomarkers from OCT image 149

racy of the automatic method for HRS detection. We have named the dataset as AMD,

glaucoma and DME dataset in the remainder of this chapter.

We have used a glaucoma dataset for evaluating the accuracy of the boundaries of the

layer and ONH detection. As this dataset has only ILM-RNFL, IZ-RPE and RBC bound-

aries as provided by the grader, we have computed accuracy for them only and found

the means of Root Mean Square Error (RMSE) of the boundary positions are 0, 0.21 and

0.11 pixels respectively with a standard deviation 0. No other methods can automatically

detect the ONH-centred OCT volumes to segment the boundaries. For computing the

ONH boundary accuracy, we have created an enface image from the manual and auto-

matic segmentation of the OCT images. We have found sensitivity is 0.97, Specificity 0.99,

Precision 0.99, Recall 0.97, Accuracy 0.99, and F1-score 0.98. We have also computed the

thickness accuracy of the layers over AMD dataset which was discussed earlier. Fig. 6.4

shows three B-scans by delineating boundaries of the retinal layers with automatic seg-

mentation of our proposed method. In the glaucoma patients image (Fig. 6.4 (c)), there

are undetectable layers such as ONL-ELM and for this reason, they are not shown in the

image. The vertical line shows the boundary of the ONH.

Figure 6.4: Automated segmentation output. Segmented (a) macula centred normal sub-
ject, (b) AMD subject in the presence of drusen and (c) ONH centred glaucoma subjects.

6.3 Extracting the biomarkers from OCT image

Ophthalmologists have found some biomarkers from the OCT images for early diagnosis

and progression of the ocular diseases such as DME, AMD and glaucoma. However, it

is still necessary to find new biomarkers to improve the accuracy of early detection and

prediction of retinal diseases [16]. In this chapter, we focus on showing the extraction of

eight OCT-based biomarkers defined by the ophthalmology researchers. In the following
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sections we will discuss these biomarkers along with their computation methods.

6.3.1 Biomarker-1: Layer Thickness

The thicknesses of the retinal layers are potentially an important biomarker of interest

to ophthalmologists for retinal and other diseases such as diabetes, AMD, glaucoma,

CNS diseases and cardiovascular diseases. The significance of the layer thickness can be

summarised as follows.

• The visual sensitivity is significantly correlated to the RNFL layer thickness (r =

0.23, P < 0.001) and RNFL layer volume (r = 0.21, P < 0.001) [21].

• It has been estimated that up to 40% of the nerve fibre layer can be destroyed before

significant vision loss occurs from glaucoma [93].

• The RNFL, GCL and IPL layers were significantly (p < 0.001) thinner in glaucoma

eye approximately 20% than normal eyes [17].

• Mean retinal thickness was reduced significantly (p = 0.008) in the group of par-

ticipants with early AMD compared with the control group approximately 10% at

multiple locations within 2.0mm of the fovea [19].

6.3.1.1 Detection process and Evaluation of Biomarker-1

We have computed the distance between two boundaries of the corresponding layers as

the thicknesses of the corresponding retinal layers. Four state-of-the-art methods (three

of them are publicly available [114, 119, 150] and other one is collected from the author

on request [116]) are used to compare the proposed method performance. The result

shows that our proposed method has significantly lower error than any other state-of-

the-art methods. The mean percentages of absolute difference error of the layer thickness

is reported in Table 6.2. The errors also indicate it is reliable for disease progression and

diagnosis due to low error than the distortion in the layer thickness for the diseases. Fig.

6.5 shows the manual and automatic retinal thickness.
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Figure 6.5: Quantification output of layer thickness (Biomarker-1). (a) Manual and (b)
automatic thickness map of the macula centred retina from a subject of the AMD dataset.

Table 6.2: The mean percentage of absolute error between manual and automatic detec-
tion of layers thickness (Biomarker-1).

Layer Dufour et
al. [114]

Iowa
Ref. [119]

AURA
tools [150]

Duan et
al. [116]

Proposed

RNFL 9.79 10.84 7.14 56.76 2.75
GCL 17.82 2.76
IPL 18.35 3.10
INL 20.21 11.50 120.01 4.92
OPL 24.90 13.83 16.07 7.67
ONL 12.20 10.89 5.74
ELM 25.66
ISL 14.26
EZ 17.87 20.49 16.34
OSL 31.41 21.94
RPE 21.94 11.32 11.65

6.3.2 Biomarker-2: Hyper-Reflective intra-retinal Spots (HRS) segmentation
& quantification

The appearance of the Hyper-Reflective intra-retinal Spots (HRS) is a sign of diabetic

retinopathy [2]. These HRSs are located in the inner retina, mostly between the INL

and ONL layers [2, 18]. Although a number of automatic methods exist for detecting

these HRSs from the CFP images [7, 68], to the best of our knowledge there is no auto-

matic method available from the retinal SD-OCT images. Fig. 6.6 shows the examples of

HRS appearance in the SD-OCT images and segmented manually, using our automated

method.
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Figure 6.6: Hyper-Reflective intra-retinal Spots (HRS) in the retinal SD-OCT (Biomarker-
2). (a) SD-OCT B-scan (b) manual ILM-RNFL boundary (red line) and HRSs (green) (c)
automatically detected ILM-RNFL boundary (red line) and HRSs (green).

6.3.2.1 Detection process and Evaluation of Biomarker-2

HRSs are brighter and located in the inner retina, mostly between the INL and ONL

layers [18] as shown in Fig. 6.7. Since we have segmented layers, ROI for detecting the

HRSs are limited to the area between the INL and the ONL layers. In general, these layers

are darker than RNFL and RPE layers. So, the pixels which are between the INL and ONL

layers have intensity values more than the mean intensity of the RNFL and RPE layers.

The pixels are defined as HRS pixels.

We have used the DME dataset for evaluating the accuracy of the HRS detection be-

tween manual and automatic methods. Fig. 6.6 shows the automatic and manual detec-

tions of the HRS in a B-scan. We have achieved sensitivity 0.82, Specificity 0.99, Precision

0.77, Recall 0.82, Accuracy 0.99 and F1-score 0.79.

6.3.3 Biomarker-3: Drusen segmentation & quantification

Drusen are the accumulation of extracellular material (proteins and lipids) between the

RPE and BM layers: see Fig. 6.1 (g) and 9. The morphological features such as distinct-

ness, individual size, total area, volume and number of drusen are used as important

biomarkers of early AMD and signify a risk of progression. The presence of macular large

(greater than 125 µm) drusen is a characteristic finding of early intermediate AMD and

is a key risk factor for the development of more advanced dry AMD [20]. For decades,

CFP has been used to image the in vivo drusen as gold standard. Due to 3D informa-

tion such as volumes, depth position of the drusen motivated ophthalmic practitioners

are using OCT imaging to find new biomarkers of risk of diagnosis and progression of
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diseases [130]. Drusen detection in CFP and SD-OCT images has good agreement, and

each imaging modality has its own advantages [132]. Most of the OCT imaging-based

drusen detection methods used polynomial line fitting on RPE or finding the abnormal-

ity in thickness of the RPE. The recent methods of detecting drusen have been reported

in Chapter 2 (Section 2.7.6).

6.3.3.1 Detection process and Evaluation of Biomarker-3

Drusen detection is done by prior MZ-EZ to RBC thickness knowledge which should be

around 20 µm. If there are regions where the thickness of the ISL-EZ to RBC is 50% more

than the 20 µm then this region is regarded as the seed points of the drusen. Then the

region with 5% more than 20 µm and connected with those seed points are included as

drusen.

Figure 6.7: 2D and 3D drusen visualisation (Biomarker-3). (a) Manual and (b) automatic
detection of drusen, blue in the B-scan (top) and 3D view of drusen (bottom).

We have used an AMD dataset for evaluating the accuracy of drusen detection be-

tween manual and automatic measures. Fig. 6.7 shows the automatic and manual de-

tection of drusen in a B-scan and a 3D view of the drusen. We have achieved sensitivity

0.70, Specificity 0.99, Precision 0.70, Recall 0.70, Accuracy 0.99 and F1-score 0.70.
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6.3.4 Biomarker-4: Cup-Disc ratio

The ratio between optic disc cup and neuroretinal rim surfaces is called the cup-disc ratio

[6]. It is a very important structural indicator for assessing the presence and progression

of glaucoma. If this ratio increases by more than 0.5, it is a risk sign for glaucoma. In-

creasing cup means decreasing the nerve fibre tissues in the rim area and worsening

glaucoma.

In an OCT image, the terminal point of the BM, called BM Opening (BMO) gives the

boundary of the disc that is also rim and the intersection points of the 120 µm top to the

BM plane, and ILM-RNFL gives the boundary of the cup [6]. Fig. 6.1 (e) and 6.8 show

cup and disc in an enface image and B-scan of the OCT image respectively. To quantify

the ratio, glaucoma specialists generally used CFP of the optic disc. In OCT images, there

is also a good correlation with the fundus image [68].

There are many automatic methods for detecting the optic disc or ONH from OCT

images. Only a few extend their work towards cup detection and cup-disc ratio compu-

tation. The first work found by Boyer et al. [90] who shows the correlation coefficient

between manual and their algorithm are 0.8 for cup diameter and 0.9 for disc diameter.

Abramoff et al. [68] detects ONH using graph search and computes the cup-disc ratio

with 0.93 correlation coefficient between manual and automatic detection. Hu et al. [148]

found 0.85 correlation coefficient. Lee et al. [81] used K-NN classifier for a cup and disc

detection and found an unsigned error for the optic disc cup of 0.076± 0.026mm and the

neuroretinal rim of 0.061± 0.026mm.

6.3.4.1 Detection process and Evaluation of Biomarker-4

We have developed the ONH detection method as described earlier. The cup detection is

a simple mathematical calculation using the position of the ILM-RNFL, RBC and ONH

boundaries. A reference line in parallel to the BM line is set at the height of 120 µm, and

the intersection points between the ILM-RNFL and reference line define the boundary of

the cup.

The glaucoma dataset is used to evaluate the accuracy of the cup-disc ratio. A cup
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Figure 6.8: Cup and Rim in a SD-OCT B-scan [6]. BMO points (green dots) indicate the
disc area. The reference plane (red line) was set above the base plane (BMO plane, green
line) at a height 120 µm. Intersections of the ILM-RNFL and the reference plane indicated
the cup area (green dot).

is detected using the formula described earlier for both of the automatic and manual

detection. We have found manual cup-disc ratio is 0.1453 and automatic 0.1406 where

the difference of error is 0.005. The accuracy of the disc as earlier reported is the same for

the rim as the disc border is the rim border. The Sensitivity of the cup detection is 0.95,

Specificity 0.99, Precision 0.99, Recall 0.95, Accuracy 0.99, and F1-score 0.97.

6.3.5 Biomarker-5: Bruch’s Membrane Opening Minimum Rim Width (BMO-
MRW)

Fig. 6.9 shows an example of a retinal B-scan with delineating BMO-MRW. It is an optic

disc parameter and associated with glaucoma. The minimum distance between BMO

and ILM-RNFL is called the BMO-Minimum Rim Width (BMO-MRW) [21]. It represents

a geometrically accurate estimate of rim width. This biomarker detection is possible only

in ONH-centred OCT images. The visual sensitivity of glaucoma patients is significantly

correlated to the BMO-MRW (r = 0.32, p < 0.001), which is a higher correlation then

RNFL Thickness [21]. The BMO-MRW in normal patients is 307± 84.3µm whereas early

glaucoma has 211± 60.5µm [22].

OCT imaging allows the extraction of this biomarker. Our study found only Antony

et al. [119] computes this parameter automatically and reported that their measurements

were not significantly different from the manual computation.
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Figure 6.9: A retinal B-scan in optic disc region with BMO-MRW and MDB.

6.3.5.1 Detection process and Evaluation of Biomarker-5

The BMO-MRW is computed by the minimum arithmetic distance between BMO and

ILM-RNFL.

We have used a glaucoma dataset for computing performance and have found the

mean ± standard deviation of the absolute difference was 2.3± 5.1 pixels.

6.3.6 Biomarker-6: Minimum Distance Band (MDB)

The MDB is the circular band and a quantitative OCT-based metric of neuro-retinal rim

tissue [12]. It is computed by the minimum distance between the ONH surface and RPE

layers. MDB is a biomarker for glaucoma and can compute only in ONH-centred OCT

images. MDB is inversely proportional to the cup-disc ratio. Fig. 6.9 shows an ONH-

centred retinal B-scan with delineating the MDB. The correlation coefficient between the

MDB and cup-disc ratio are −0.88 and −0.56 for MDB value and area respectively with

p < 0.05 which means MDB is highly correlated to the glaucoma-like cup-disc ratio [12].

To the best of our knowledge, only we are the first computed MDB automatically.

6.3.6.1 Detection process and Evaluation of Biomarker-6

MDB is computed by the minimum distance between the top boundary of the RPE and

ILM-RNFL boundary in the ONH region which serve as the surface of the ONH.

We have used a glaucoma dataset for computing performance and found the mean ±
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standard deviation of the absolute difference was 2.1± 4.6 pixels.

6.3.7 Biomarker-7: Attenuation coefficient of the RNFL

The strength of the OCT signal provides information about the retinal layers. This strength

of the signal is not only related to the scattering properties of the tissue but also depends

on many other factors such as media opacities, strength of the incident light beam and

the intermediate tissue before reaching the deeper tissues. As a consequence, the OCT

signal needs to be further analysed by taking these factors into account to reduce artefacts

and errors in accuracy and precision. Ignoring these factors shows a difference between

the signal strength of healthy and glaucomatous RNFL tissue. Schoot et al. [23] found

by increasing the severity label of glaucoma, RNFL’s attenuation coefficient is decreased

and a significant structure-function relationship between the attenuation coefficient and

the visual field’s mean defect.

Schoot et al. suggested the attenuation coefficient of the RNFL from the RNFL and

the RPE signal of OCT, which latter is not affected by the aforementioned factors and

represents a tissue property, can be quantitatively analysed. The attenuation coefficient

is computed for each A-scan by using the following formula [23].

µRNFL =
log
(

R
β + 1

)
2d

(6.3)

Where R denotes the ratio of the integrated OCT signal of the RNFL over the inte-

grated OCT signal of the RPE, d denotes the thickness of the RNFL, and β is a constant

and estimate value is 2.3.

Vermeer et al. [5] are the only research article where attenuation coefficient of the

RNFL layer has been computed. They detect RNFL and RPE using Support vector ma-

chine with eight features constructed by the intensity and gradient distribution. They

have shown that the attenuation coefficients for glaucomatous eyes were much lower

and showed local defects. Normal and glaucomatous average RNFL attenuation coeffi-

cients were highly significantly different (p < 0.0001) and fully separable.
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6.3.7.1 Detection process and Evaluation of Biomarker-7

We have computed the attenuation coefficient of the RNFL layer using its definition along

each A-scan.

We have computed the attenuation coefficient of the RNFL layer for each A-scan. For

the purpose of comparison, we have computed the unsigned difference of the attenua-

tion coefficient for each A-scan between manually segmented layers and automatically

segmented layers. We have used the SD-OCT volumes of AMD patients for evaluation

purposes and found the mean unsigned difference of the attenuation coefficient is 0.0008.

6.3.8 Biomarker-8: Reflectivity of The EZ layer

The ratio between the peak intensity of the EZ and ELM is defined as the relative intensity

or reflectivity value of the EZ layer [16]. There have been reports of correlations between

the intensity of the second reflective band and early AMD. The control patients had an

average of 2.27 reflectivity value for the EZ layer whereas early AMD patients had an

average of 1.73. This value also reduces with age [16]. To the best of our knowledge, we

are the first to compute the reflectivity value of the EZ layer automatically.

6.3.8.1 Detection process and Evaluation of Biomarker-8

The ratios between the peak intensity of the EZ and ELM along each A-scan are computed

as the reflectivity value of the EZ layer.

We have computed the attenuation coefficient of the RNFL layer for each A-scan. For

a comparison, we have computed the unsigned difference of the attenuation coefficient

for each A-scan between manually segmented layers and automatically segmented lay-

ers. We have used the SD-OCT volumes of AMD patients for evaluation purposes and

found the mean unsigned difference of the attenuation coefficient is 0.06.
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Table 6.3: The summary of performance evaluation of the Biomarker 2 to 7.

Biomarker Manual Vs Automatic quantification
Biomarker-2: Quantifi-
cation value of HRS

Sensitivity = 0.82, Specificity = 0.99, Precision
= 0.77, Recall = 0.82, Accuracy = 0.99, and F1-
score = 0.79

Biomarker-3: Quantifi-
cation value of Drusen

Sensitivity = 0.70, Specificity = 0.99, Precision
= 0.70, Recall = 0.70, Accuracy = 0.99, and F1-
score = 0.70

Biomarker-4: Cup-Disc
ratio

Manual cup-disc ratio is 0.1453 and automatic
0.1406 where the difference of error is 0.005.

Biomarker-5: BMO-
MRW

Mean ± standard deviation of the absolute dif-
ference was 2.3 ±5.1 pixels.

Biomarker-6: Mini-
mum Distance Band
(MDB)

Mean ± standard deviation of the absolute dif-
ference was 2.1 ± 4.6 pixels.

Biomarker-7: Attenua-
tion Coefficient of the
RNFL

Mean unsigned difference of the attenuation
coefficient is 0.0008.

Biomarker-8: Reflectiv-
ity value of the EZ layer

Mean unsigned difference of the attenuation
coefficient is 0.06.

6.4 Conclusion

Retinal diseases such as DME, AMD and neuropathy diseases such as glaucoma cause vi-

sion loss. They are both common and devastating. With the advanced SD-OCT imaging

techniques, we now have much more information available for interpretation, measur-

ing and potentially tracking the progression of these diseases. In this chapter, we have

proposed an automatic segmentation method for detecting ONH and layers in the pres-

ence of the ONH which also equally works in other OCT images such as macula-centred

OCT images. To the best of our knowledge, this is the first automatic method to segment

layers in any area of the retina without human intervention. In this chapter, we have

also proposed a highly accurate segmentation method for the HRS and drusen from the

retinal SD-OCT images. The high accuracy of the automatic method in estimating eight

biomarkers demonstrates its potential usefulness in large-scale studies for early retinal

disease screening.





Chapter 7

Classification model of Diseased
patients

This chapter presents a novel method for classifying the diseased eye into Age-related

Macular Degeneration (AMD)) and Diabetic Macular Edema (DME) from Spectral Do-

main Optical Coherence Tomography (SD-OCT) volumetric images. This chapter is based

on the following publication.

Md Akter Hussain, Alauddin Bhuiyan, Chi D. Luu, Robyn H. Guymer, Hiroshi

Ishikawa, R Theodore Smith, Joel S. Schuman and Ramamohanarao Kotagiri. ”Clas-

sification of Healthy and Diseased Retina Using SD-OCT Imaging and Random Forest

Algorithm”. (To be submitted )

7.1 Introduction

Eye diseases such as Age-related Macular Degeneration (AMD) and Diabetic Macular

Edema (DME) are amongst the most common causes of vision loss in our communities.

The number of people with AMD is expected to increase by ∼1.5 fold over the next ten

years due to an increase in aging population [7]. Similarly cases of DME are expected

to grow exponentially affecting over 300 million people worldwide in the next few years

[14]. In this chapter, we have proposed an automatic classification method for people

with AMD, DME, and people with normal retina using Random Forest classifier, a highly

robust and efficient machine-learning algorithm. The classification method might be able

to used to determine the severity level of the diseases for patients based upon their risk

of progression and potentially serve as a prediction tool. A total of ten features based

161
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upon current clinical knowledge have been extracted automatically from the Spectral

Domain Optical Coherence Tomography (SD-OCT) images of the retina of patients. We

have tested several machine learning algorithms such as Support Vector Machine (SVM),

Decision Tree, and Random Forest. Among them, Random Forest has shown the best

performance (more than 97% accuracy) overall.

There has been few work on the automatic segmentation of the retinal layers, but only

a few methods are available for the classification of the SD-OCT volumes [26, 153, 154].

Among those classification methods, most of them are binary classifier that is classified

into diseased or normal cases, not specific diseased such as AMD and DME. The features

for classification purposes are mostly on texture information of the image and are cre-

ated using Local Binary Pattern (LBP), a histogram of oriented gradient and other texture

analysis. These features are filtered using Principle Component Analysis (PCA), Bag-of-

word, and k-means cluster, etc. The disadvantage of the texture information is that it is

more susceptible to noises and device oriented due to different intensity variation among

them. On the other hand, retinal structure information does not depend on the device

and is less susceptible to noise. That is why the classification method based on retinal

structure information is more reliable than the texture-based classification. Fraccaro et

al. [26] developed a classification method using retinal pathology information, but they

were manually extracted features. He showed that Random Forest algorithm has supe-

rior performance when compared to One-rule, Decision Tree, Logistic Regression, Ad-

aBoost, and Support vector machine for the classification of the diseases. To the best of

our knowledge, there is no classification method based on automatically segmented the

retinal structure and pathology information. A brief survey of the classification methods

used in eye disease is discussed in chapter 2 (section 2.7.7).

In this chapter, we have proposed a classification method of AMD, DME and normal

individuals. The system has also been tested for the binary classification case that has

also shown excellent performance. There are a total of ten retinal features extracted from

the SD-OCT images, and all of these are considered clinically important features based

on the changes of the retinal structure and pathology due to AMD and DME. The reti-

nal layers are automatically segmented using our method explained in Chapter 5. We
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have proposed a quantification method for pathology with the help of segmented layer.

The features constructed with two parameters each from the retinal thickness, the com-

plex of ELM to RPE layer, and the RPE layer; two parameters from the boundary curvi-

ness of the retinal layers (OPL-ONL and MZ-EZ), and two parameters for the volume

of the drusen and Hyper-Reflective intra-retinal Spots (HRS). Several machine-learning

approaches have been used to test the performance of the feature selection as well as a

comparison between them. Evaluation is performed on two datasets including a pub-

lic dataset[1] with fifteen-fold cross validation such that each test includes one case of

each for the data set containing 45 individuals and also leave one out cross validation

test. The results show high accuracy on both datasets (45 and 72 SD-OCT volumes) and

higher than the original work on the public dataset [1].

Contributions of the chapter are as follows.

• Automatic classification of SD-OCT volumes of patients into AMD, DME, and nor-

mal.

• Automatic feature extraction from the SD-OCT volumes that are related to the

changes of the retinal structure due to AMD and DME (such as thickness of the

retina and retinal layers, drusen).

This chapter is organised as follows. Section 7.2 describes the methodology of clas-

sification including the features extraction and the classification approach. Experimental

method and results are discussed in section 7.3 and 7.4 respectively. Finally, section 7.5

concludes the chapter.

7.2 Methodology

The methodology of classification of the diseased eyes is formulated as a standard clas-

sification procedure as shown in Fig. 7.1. Since the proposed method uses the segmen-

tation output of the retinal layer boundaries (explained in chapter 3 and 5), there is no

requirement for pre-processing or noise reduction. The noise reduction has already been

employed in the segmentation phase. After the segmentation, ten retinal features are ex-

tracted as described in section 7.2.1. The difference between boundaries of a layer along
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the A-scan is considered as the thickness of the layers and retina. The pathologies such

as drusen and HRS are identified using position and intensity profiling of the image (ex-

plained in Chapter 6). Layer segmentation is used to identify the position and hence

the type of pathology. For example, drusen are identified using the non-uniformity of

thickness of RPE layer and by simply counting the number of pixels in the drusen gives

the volume of the drusen. Training and testing are two steps of the machine learning

algorithm where training is used to create the classification model, and testing is used to

evaluate the performance of the model. In the next subsection, the method of extracting

the features is discussed.

Figure 7.1: The flow diagram of the proposed classification method.

7.2.1 The feature extraction process

Ophthalmologists have defined a set of signs from the changes of the retinal structural

information for the retinal diseases such as AMD and DME [2,19,182]. The signs include

abnormality of the retina and its layer thickness and reflectivity such as OSL thickness

was reduced significantly in early AMD patients [183]. Ophthalmologists have also de-

fined presence of pathologies as retinal diseases such as drusen and RPE detachments for

AMD; cysts for DME. As a consequence, the proposed method has used these signs of

the DME and AMD as features for the classification method. A total of ten features are

extracted via a process as follows.
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7.2.1.1 Feature 1: Volume of the Hyper-Reflective intra-retinal Spots (HRS)

The presence of the HRS in the retinal SD-OCT volumes present in diabetic eyes even

when clinical retinopathy is undetectable [2]. For this reason, we have chosen the volume

of the HRS as a feature. It is characterised by the brighter intensity and located in the

inner retina mostly in INL to ONL layer. Since we have segmented the layers, we search

HRS only in those layers. In general, those layers are darker than RNFL and RPE layers

except those HRS pixels. So the pixels, which are located in INL to ONL layer and have

intensity value more than the mean intensity of the RNFL and RPE layers, are defined

as HRS pixels. The total number of pixels multiplied by the resolution of the image is

considered as the volume of the HRS. Figure 7.2 shows an example of the automatic

segmentation of HRS by our proposed method.

Figure 7.2: (a) A SD-OCT B-scan (b) manual ILM-RNFL boundary (red line) and HRS
(green) (c) automatically detected ILM-RNFL boundary (red line) and HRS (green).

7.2.1.2 Feature 2: Volume of the drusen

The presence of drusen in the retinal SD-OCT images are a key risk factor for AMD and

DME patients [19,182]. For this reason, we have chosen the volume of a druse as a feature

for the classification method. They are characterised by RPE layer detaching from the

BM create an enlarged and intensities in the enlarged area are lower than the RPE layer.

This enlargement is also found in the upper few layers all the way to ELM layer. The

thicknesses of ELM to BM layer are computed and a first order polynomial is used to fit

the thickness with respect to horizontal position. If the value of the thickness deviates

from the fitted value of the polynomial is considered as potential drusen area. If the

intensity ratio between upper and lower few pixels in the potential drusen area is greater
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than 1.3 are considered as drusen. The total number of pixels multiplied by the resolution

of the image is considered as the volume of the drusen. Figure 7.3 shows an example of

the automatic segmentation of the drusen area by our proposed method and a 3D view

of drusen in the SD-OCT volume.

Figure 7.3: (a) A SD-OCT B-scan with delineating drusen by the blue colour (b) Drusen
in 3D view of an SD-OCT volume of an AMD patient.
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7.2.1.3 Feature 3: Curviness of the MZ-EZ boundary

The curviness of the MZ-EZ boundary is an effect of RPE detachment and drusen for

the retinal diseases AMD. We have proposed a method to compute the curviness of a

boundary that is shown in Algorithm 1. In step 1, the position of the RBC boundary is

subtracted from the given boundary to normalize line the position. A constant value (α =

3) is used to penalize a position of the boundary as curviness. For example, if deficiency

of the boundary from the first order polynomial value is more than α, we consider them

as curvy and penalize otherwise they are not penalized. Another constant value (δ = 5) is

used to find the peak of the boundary. For example, a position of the boundary is defined

as peak, if it has at least δ difference between the local maxima and the local minima. A

value is considered local maxima if that value is more than one of the neighbours but

not less than any of the neighbours. Similarly, a value is considered local minima if that

value is less than one of the neighbours but not greater than any of the neighbours. This

will ensure there is one local maxima between two local minima and vice versa. The

nearest two local maxima and minima are removed if the difference between them is less

than δ. This step is repeated for removing all neighbour local minima and maxima with

difference less than δ. Figure 7.4 shows the curviness of different boundaries.

Algorithm 6 Curviness of a given boundary

Input: The boundary of RBC (BRBC) and given (BGiven).
Output: The value of curviness (C).

1: NL = BRBC - BGiven.
2: Compute first order polynomial P1

NL using NL
3: Df = |NL− P1

NL|
4: C1 = Σiε(D f>α))D fi
5: LMM=localMaxMin(NL)
6: Repeat until there is at least one minDiffNeigh(LMM)< δ
7: Remove Smallest Difference Pair in LMM
8: End Loop
9: C2 = Number of Local Maxima in LMM

10: C= C1 × C2.
α is the maximum deficiency value for not a curve. localMaxMin(NL) is a function that
gives the local maxima and minima in the NL and stored into LMM; minDiffNeigh(LMM)
is a function which gives minimum difference between neighbour minima and maxima.
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Figure 7.4: The curviness of different MZ-OZ boundaries (red) with a different curve
using our proposed method. RBC boundary is in green.

7.2.1.4 Feature 4: Curviness of the OPL-ONL boundary

The curviness of the OPL-ONL boundary is an effect due to the Cyst and HRS exist for

retinal disease DME. The curviness of this boundary is computed using Algorithm 1 with
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the same constant values as MZ-OZ curviness (Feature 3).

7.2.1.5 Feature 5-10: Thickness parameters of the structures

Six more features from three structures, Retina, Complex of EZ to RBC layers, and RPE

layer are quantified as features shown in Fig. 7.5. Two features from each of the struc-

ture are added to the feature list. The thicknesses of these structures of the retina have

changed significantly due to the retinal diseases of the AMD and DME [26, 183]. For this

reason, we have added mean and 70th percentile of the thickness value of these structures

as features for the classification method. The thickness of the structure is computed by the

difference of the position of the enclosed boundaries such as the thickness of the retina is

computed by ILM-RNFL and RBC boundaries. Similarly, the thickness of the complex of

EZ to RBC layer is computed by ONL-EZ and RBC boundaries, and the thickness of the

RPE layer is computed by IZ-RPE and RBC boundaries. The thickness is then smoothed

for reducing the possible error in the segmentation by applying the Gaussian filter. Then

these smooth thickness values are used for computing the features.

7.3 Dataset and Experiment setup

We obtained SD-OCT images from three sources: DUKE University [1], Centre for Eye

Research Australia (CERA) and New York University. The Duke University provided

45 images consisting of 15 normal, 15 AMD and 15 DME. CERA provided 14 AMD im-

ages and New York University provided 13 normal images. Using these three sources

of images we constructed two datasets one entirely based on DUKE image data (D-1)

and the second by combining all the three sources with 72 images consisting of 29 nor-

mal, 28 AMD and 15 DME (D-2). CERA images have 512× 1024× 49 voxels per sub-

jects of SD-OCT volumes acquiring from Spectralis SD-OCT (Heidelberg Inc., Heidel-

berg, Germany). New York University images have 512× 1024× 19 voxels per subjects

of EDI-OCT volumes acquiring from Spectralis SD-OCT (Heidelberg Inc., Heidelberg,

Germany).

Several machine-learning algorithms are used to compare the accuracy of the classifi-
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Figure 7.5: (a) A 3D render image of the retina with the choroid constructed from an SD-
OCT volume; (b) Segmented layers of the retina and choroid; (c) The complex of the EZ,
IZ, and RPE in a different colour in the gray-scale retinal SD-OCT image.

cation model for two and three class classifications of eye patients. The machine-learning

algorithm are Logistic Regression Model; Support Vector Machine with two kernel func-

tions, Linear and Radial basis function; AdaBoost, Nave Bayes Model, Decision Tree with

Regression and classification model; and Random Forest; two class classification model
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categorizes the subjects into normal and diseased, while three class classification model

categorizes into AMD, DME and normal. We have used Matlab 1 default library func-

tion for each of the machine learning algorithms’ implementation. We have performed

k-fold cross validation with k=15 for all machine learning algorithms on both datasets,

this way we make sure that each test fold has at least one instance of each case tested as

in [1]. In k-fold cross validation test, a given dataset is randomly divided into k parts

(fold) where (k-1) folds of subjects are used for training the classification model and the

remaining one fold of subjects are used to test the model. The system is executed k times

so that each fold of the subjects must be used once for testing the model. Since the given

dataset is divided randomly into folds and the performance of the classification model

depends on the training data, the performance of the model varied in each iteration. For

this reason, we have repeated the k-fold cross validation test 10 times and the average

accuracy (total number of successfully classified subjects divided by the total number of

subjects) is defined as the model’s accuracy. The optimal parameters of the classification

algorithms are selected for each fold using a portion of training data as validation data.

Once the optimal parameters for the fold are chosen the model is learned using the whole

training data and the model is tested using the test data. The optimal parameters chosen

are number of trees for Random Forest and Kernel scale for SVM. We have further ex-

amined Random Forest algorithm with leave one out test. The results are shown as the

percentage of successfully classifying the subjects of a dataset as accuracy.

7.4 Results and Discussion

Our classification model for the eye diseases patients is designed using the Random For-

est Algorithm. Table 7.2 shows the average confusion matrix for 10 k-fold cross validation

tests where k = 15 using Random Forest classification method. It is the best way to eval-

uate the performance as each test fold contains one instance of each class. The accuracy

for our proposed method is better than Srinivisan et al. (the owner of the dataset D-1) on

dataset D-1 where we have achieved average accuracy 97.11% with standard deviation

1MATLAB. version 9.0.0 (R2016a). The MathWorks Inc., Natick, Massachusetts, 2016
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Table 7.1: Performance of four state-of-the-art and proposed methods on partial DUKE
dataset (D-1) considering only normal and DME patients (because Venhuizen et al.,
Lemaitre et al., and Sidibe et al. used to classify only them).

Metric Srinivisan
et al. [1]

Venhuizen
et al. [155]

Lemaitre
et al. [14]

Sidibe et
al. [25]

Proposed
method

Sensitivity 100 71.42 86.67 80 97.33
Specificity 86.67 68.75 100 100 100
Accuracy 93.33% 70.00% 93.33% 90.00% 98.67%
AUC value - - - - 0.99

1.07 for ten iterations of 15-fold cross validation tests while Srinivisan et al. [1] achieved

95.56%. The comparison between state-of-the-art methods in terms of sensitivity and

specificity on partial DUKE dataset is shown in Table 7.1. Since Lemaitre et al. [14] and

Sidibe et al. [25] have reported the performance of the classification model for two classes

(Normal and DME) using sensitivity and specificity on the partial data of DUKE dataset

(only normal and DME patients), we have also follow the same approach for comparison

purpose between Srinivisan et al. [1], Venhuizen et al. [155], Lemaitre et al. [14], Sidibe et

al. [25] and our proposed method on partial DUKE dataset (only DME and Normal pa-

tients) (see Table 7.1). An Area Under the receiver operator characteristics Curve (AUC)

value does not report by the other researchers that is why the corresponding cells in Table

7.1 contain dash sign (-). The accuracy values show our proposed method outperforms

these four state-of-the-art methods.

For three-class classification model, normal patients are classified with 100% accuracy

in both of the datasets (D-1 and D-2). AMD patients are classified with 92.7% and 98.9%

accuracy on dataset D-1 and D-2 respectively. We can observe that the classification ac-

curacy increases when the AMD subjects are increased. DME patients are classified with

98.7% and 94.0% accuracy on dataset D-1 and D-2 respectively. Total accuracy for the

dataset D-1 and D-2 are 97.1% and 98.3%. For two-class classification model, the classifi-

cation for normal subjects shows 100% accuracy on both datasets but the diseased cases

are classified correctly more in dataset D-1 than D-2. We have tested Random Forest al-

gorithm with leave one out test where three and two class classification model shows

97.78% accuracy in each case on dataset D-1 that is better than the accuracy (95.83% and

97.22%) on dataset D-2. The confusion matrix of Random Forest classification model is
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reported in table 7.2. In addition, we have achieved the AUC values for each case (for

example, normal patients as positive class in three and two class classification method;

AMD patients as positive class; DME as positive class; etc.) 0.99 with a standard devia-

tion of 0.001.

Table 7.2: Average of 10 confusion matrixes on 15-fold cross-validation test for the pro-
posed classification model using Random Forest.

We have examined the classification model using several machine learning approaches.

The average accuracy with 15-fold cross validation test applied ten times in both dataset

is reported in Table 7.3 with mean accuracy and standard deviation for ten iterations.

Logistic regression model shows the worst performance that demonstrates unsuitability

as classification model for the patients based on the proposed features from SD-OCT im-

ages. SVM with linear and RBF kernel functions show better result in dataset D-2 but not

as good as AdaBoost, Nave Bayes Model, Decision Tree with Regression and classifica-

tion model; and Random Forest based classification model. AdaBoost based classifica-

tion model shows similar performance as SVM. Nave Bayes Model shows good accuracy

for the binary classification where it shows 100% accuracy on dataset D-1. Regression
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Table 7.3: The accuracy for different machine-learning algorithms for the classification
model based on the proposed features.

# of
class

Data-
sets

LR
Model

SVM Ada-
Boost

NB
Model

Decision Tree Random
ForestLinear RBF Reg. Class.

2
D-1 76.44

(3.18)
87.33
(1.50)

88.67
(1.26)

95.56
(1.48)

100.00
(0.00)

92.22
(2.40)

94.00
(1.50)

98.22
(1.41)

D-2 80.42
(2.12)

96.81
(0.67)

95.97
(1.02)

96.94
(1.94)

97.50
(1.43)

99.72
(0.88)

99.86
(0.44)

97.50
(1.10)

3
D-1 49.56

(2.58)
87.56
(1.55)

86.22
(1.75)

88.44
(3.89)

91.11
(1.81)

93.33
(0.00)

93.56
(0.70)

97.11
(1.07)

D-2 65.97
(3.83)

94.03
(1.74)

91.11
(1.99)

98.89
(0.59)

92.36
(1.18)

97.22
(0.00)

98.47
(0.44)

98.33
(0.88)

LR: Logistic Regression; SVM: Support Vector Machine; RBF: Radial basis function; NB:
Naive Bayes; Reg.: Regression; Class.: classification.

and Classification based decision tree shows better accuracy in dataset D-2 compares to

dataset D-1. Though classification based decision tree has better accuracy than regression

based decision tree, the difference is not big. Random Forest shows accuracy more than

97% in all tests with low standard deviation for each iteration of 15-fold cross validation

test. Though, Random Forest based classification model is not the best in accuracy in

all cases that is true for others as well, its consistency in each test makes it superior for

acceptance over others.

7.5 Conclusion

In this chapter, we have proposed a novel method of eye disease classification using au-

tomatically quantified hand-crafted clinical driven features of AMD, DME and normal

patients using Random Forest algorithm. We have also examined a number of machine

learning algorithms but Random Forest performs best on accuracy than others in both

datasets. The AUC value is also high (0.99) with a small standard deviation 0.001 for

the classification method. This high accuracy with several machine algorithms demon-

strates the features extracted can model the disease. Moreover, this is the first method

where automatic segmentation of the layers and extraction of pathologies are employed

for classification of AMD, DME using SD-OCT images. The results show as predicted
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since diseases are highly correlated with the layer thickness and pathologies. The score

of the classifiers might be used as the severity level of the disease. Since we have no

data of severity level of the disease, we are unable to compute the system performance

against severity level of the diseases. This research of severity can be investigated in

the future when there is an available dataset with a severity level. This score of severity

might also used as prediction for the eye diseases. Other layers information can also be

considered as features for designing the classification model or the prediction model. As

a consequence, early detection of the diseases is possible which allow preventing blind-

ness significantly as well as the system can provide a score value as a condition of the

eye.





Chapter 8

OCTInspector: A Complete
Automated System for OCT Image

Analysis

A user-friendly Graphical User Interface (GUI) has been developed for segmenting Op-

tical Coherence Tomography (OCT) images using the proposed method as shown in Fig.

8.1. A semi-automated module for the correction of the automatic segmentation of the

boundaries of the retinal layers and the choroid has also been included. The optic disc

border and pathologies (i.e. drusen and hyper-reflective intra-retinal spots) can be cor-

rected by a manual module. This manual correction can be used for further improving

the automatic segmentation by learning the parameters of the proposed method. The

flow diagram of the OCTInspector system is shown in Fig. 8.2.

8.1 The features of the OCTInspector

The features of the system are as follows.

• Automatic segmentation of the boundaries of the retinal layers and Choroid-Sclera

Interface.

• Automatic segmentation of the pathologies (for example, hyper-reflective intra-

retinal spots and drusen).

• Automatic segmentation of cup and disc.

• Automatic extraction of Biomarkers such as cup-disc ratio, minimum distance band.

177
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Figure 8.1: The graphical user interface of the developed system using proposed method.

Figure 8.2: The flow diagram of the OCTInspector System.

MDB: Minimum Distance Band; BMO-MRW: Bruch’s Membrane Opening Minimum
Rim Width.

• Manual correction of the automatic segmented structures as shown in Fig. 8.3.
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• Produce 3D view of any combination of the layers and pathologies shown in Fig.

8.4.

• Produce enface image of any combination of the layers and pathologies shown in

Fig. 8.4.

• Can read all kinds of OCT files such as image files (.png, .jpeg, .tif, etc.), Cirrus OCT

files (.img) and Spectralis OCT (Heidelberg Engineering) files (.vol).

• Allows saving of the automatic segmentation which can also be re-examined for

future analysis and/or modification.

Figure 8.3: The correction mode where Choroid-Sclera Interface (CSI) is selected for cor-
rection.

8.2 The functionalities of the OCTInspector

For automatic segmentation, the system only needs to open an OCT image volume or file

and then a single click will do automatic segmentation. The system automatically shows

the segmented boundaries and pathologies in the interface as shown in Fig. 8.1. The
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Figure 8.4: (a) 3D View of a segmented macula centred OCT image; (b) 3D view of a
segmented RNFL and Choroid in macula centred OCT image; (c) 3D view of a segmented
ILM surface and ONH; (d) 3D view of the RPE in ONH centred OCT image; (e) Enface
image of the RNFL, GCL, IPL from Macula Centred OCT Image; (f) Enface image of the
RPE Layer from macula-centred OCT image that shows the drusen by brighter intensity;
and (g) 3D view of drusen from a macula-centred SD-OCT volume.

RNFL: Retinal Nerve Fiber Layer ; ILM: Internal Limiting Membrane; RPE: Retinal Pigment
Epithelium ; GCL: Ganglion Cell Layer; IPL: Inner Plexiform Layer.

information about current steps in a loading bar is displayed. The user can change the

colour of the boundaries as well as choose which boundaries should be visible or hidden.

When a user selects the manual correction mode, it will show the options of a cor-

rection menu as shown in Fig. 8.3. The boundaries of the retinal layers and the choroid

are corrected by a semi-automated method. When a user selects a boundary from the

drop-down menu, the system will highlight the boundary by drawing a circle on the

boundary. The user needs to click on the correct position of the boundary; then the sys-
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tem will run the automated method of the selected boundary, but this time, a region of

interest is restricted by the boundary and the click points. If a single click cannot detect

the correct boundary, then multiple clicks are required to correct that boundary. The optic

disc border and pathologies can also be corrected by clicking.

The system is able to produce a 3D view of any combination of the layers and patholo-

gies as well as their 2D enface image, using automatic segmentation or manually correct

segmentation as shown in Fig. 8.4. The system utilises Fiji [181], an open source module

for image processing, for visualising the structures in 3D.

The system can also compute various biomarkers such as cup-disc ratio, Bruch’s

membrane opening minimum rim width, minimum distance band using the segmented

output. The list of biomarkers and procedure of computing them are discussed in Chap-

ter 6.





Chapter 9

Conclusion and Future Research
Direction

9.1 Summary of contributions

This thesis described the development and validation of a set of novel medical image

analysis methods for the automated segmentation of the retinal layers and the choroid

that work well even in the presence of drusen, geographic atrophy and Hyper-Reflective

intra-retinal Spots (HRS). The methods also perform well at the Optic Nerve Head (ONH)

and/or macula regions and can extract and quantify eight significant biomarkers accu-

rately. A system named as OCTInspector has been developed using the algorithms devel-

oped in this thesis for automatic segmentation of Optical Coherence Tomography (OCT)

images. The system also provides additional manual/semi-automatic functionality to

correct any segmentation errors of the automated process. The quantification of biomark-

ers by the systems provides more detail and precise information about the severity of eye

diseases. A classification model of eye diseases based on the biomarkers has been de-

veloped using machine-learning algorithms, which has given an accuracy of more than

98%. A summary of these contributions is demonstrated in Fig. 9.1.

9.1.1 Automated 3D Segmentation algorithm for the retinal layer and the choroid

A robust and effective automatic 3D Segmentation method is proposed to identify the

retinal layers and the choroid from the Spectral Domain Optical Coherence Tomogra-

phy (SD-OCT) images or higher-resolution OCT images such Enhanced Depth Imaging
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Figure 9.1: A brief summary of the thesis contribution and the future research direction.

OCT (EDI-OCT) and Swept Source OCT (SS-OCT). 3D segmentation utilises more in-

formation than 2D segmentation that leads to high accurate and reliable segmentation

than 2D segmentation. The proposed method also works in the presence and absence

of pathologies and morphological changes due to disease. This method is also seam-

lessly applicable to any regions of the retina-centred OCT images. These contributions

are described in Chapter 3 to 5. In Chapter 3, the first attempt at 2D segmentation of

four prominent boundaries of the retinal layers is explained. These layers are most af-

fected and distorted due to drusen and OCT defined geographic atrophy. This method

has enabled the development of the proposed 3D segmentation algorithm. The prob-

lem of finding a boundary from the SD-OCT images is solved by mapping the problem

into a graph shortest-path problem such that finding the shortest path using Dijkstra’s

algorithm is equivalent finding the boundaries of layers in the retina. The edge pixels

of the image derived from canny edge detection form the nodes of the graph instead

of all pixels of the image. That improves the efficiency of the algorithm by reducing

the nodes of the graph. A novel method has been proposed for approximately detect-
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ing the three reference layers that are used to reduce the Region Of Interest (ROI): this

improves the efficiency and accuracy of the detection of the boundary. The graph edge

weight is designed using spatial distance, slope similarity to a reference line and node’s

non-associativity (pixels not satisfying associated layer property) with the layer are used

for obtaining an accurate boundary as the shortest path. The method can be adapted or

generalised for other images with other kinds pathologies (although not handled in the

proposed method) by adding more properties for a node’s non-associativity weight. In

Chapter 4, an automatic 2D method for identifying the Choroid-Sclera Interface (CSI) has

been proposed. Since the choroid is different from the retina, the graph construction and

edge weight are designed by addressing the particular challenges regarding the choroid,

and the shortest path becomes the CSI. Due to small changes from one B-scan to another,

a 3D segmentation algorithm can exploit information from adjacent B-scans for getting

the boundaries of the retina and the CSI, described in Chapter 5. The adjacent B-scans

allow the method to reduce the ROI substantially and to improve the efficiency and ac-

curacy of finding the boundaries. The method first detects the boundaries sequentially

in the order of high contrast and the maximum gradient intensity to low contrast and

minimum gradient intensity of the boundaries. This approach helps to detect the low

contrast boundaries in a small ROI. In Chapter 6, the boundary detection algorithm has

been extended to work in the presence of the ONH. Due to the absence of layers in the

ONH, it requires different computations for finding the boundaries accurately. The edge

weight of the ILM-RNFL boundary is adjusted in the ONH region so that the boundary is

detected accurately by falling in that region. After detection of the ILM-RNFL boundary,

ONH is detected by using enface image and three patterns (such as the absence of layers,

dissimilar layer positions and intensity pattern) of the ONH in the SD-OCT image. At

this stage, the proposed method can detect all boundaries in the absence/presence of the

ONH and macula even in the presence of pathologies. Five datasets (two of which are

public) from four sources have been evaluated in a different stage of the method. The

total dataset contains 56 subjects among them 36 subjects with pathologies- and contains

images of varying resolutions. There is an ONH-centred volume with 200 B-scans from

one glaucoma patient. Manual grading of the images serves as the gold standard to com-
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pare the accuracy of the automatic method. A total of six state-of-the-art methods for the

retinal layer and two for the CSI produces the output from the dataset. In every dataset,

the proposed method performs best. The overall mean of the root mean square error

of the boundaries positions of the retinal layers in the macula and ONH-centred images

from the proposed method are 0.20 and 0.11 pixels respectively, which is significantly

better than the state-of-the-art methods. This performance demonstrates the potential

effectiveness of the proposed 3D automated method for monitoring the progression and

early diagnosis of retinal diseases by conducting studies on a large-scale. A system for

processing, segmenting, and viewing the SD-OCT, EDI-OCT, and SS-OCT volumes has

been developed which also includes the semi-automatic correction of the segmentation.

The system can also produce 3D views of the volumes of any combination of the retina

layers and choroid; the pathologies, etc.

9.1.2 Biomarkers quantification

In this study, methods for segmenting pathologies such as drusen and Hyper-Reflective

intra-retinal Spots (HRS), and a computation method for quantifying the clinically-derived

biomarkers have been proposed as described in Chapter 6. A novel framework is pro-

posed for measuring eight biomarkers of interest to ophthalmologists related to retinal

structural thickness, ONH, the morphological parameters of ONH, the volume of the

pathologically altered tissue (lesions of the inner and outer retina), the reflectivity of the

Ellipsoid Zone and attenuation coefficients of the Retinal Nerve Fiber Layer for early

screening of glaucoma, Diabetic Macular Edema (DME) and Age-related Macular De-

generation (AMD). An automatic method for detecting the retinal layers in the presence

of pathologies or distorted layers due to diseases, is the primary requirement for au-

tomatically quantifying the biomarkers. The pathologies are detected using intensity

profiling and thickness of the retinal layers computed using the proposed automatic 3D

segmentation. Finally, these eight clinically-useful biomarkers of the retinal and neu-

ropathy diseases are quantified automatically using the same protocol as defined by the

ophthalmologists’ research. The evaluation process found a low margin of error between

manual and automatic grading of the biomarkers. An automatic method for detecting
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HRS and drusen achieved a F1-score of 0.79 and 0.70 respectively compared with the

manual quantification. The eight biomarkers have also achieved high accuracy matching

the manually quantified values where the mean error is as low as 0.06. The high accu-

racy of the automated quantification identifies its potential use for early diagnosis and

monitoring the progression of retinal diseases in large-scale studies.

9.1.3 Develop classification model for the eye diseases

In this study, a first classification model has been built based on automatically-quantified

clinically driven features. The method can classify eye disease patients from OCT images

into Diabetic Macular Edema (DME), Age-related Macular Degeneration (AMD) and nor-

mal. The proposed classification method is designed with ten clinically driven features

based on the thickness of the retina and retinal layers, and the volume of the patholo-

gies such as drusen and HRS as features using the machine-learning algorithm, such

as Random Forest (as detailed in Chapter 7). Two datasets comprising a public dataset

(15 DME, 15 AMD and 15 normal) and a local dataset (combining the public and local

datasets, 15 DME, 28 AMD and 29 normal) of 45 and 72 SD-OCT volumes respectively,

are used to evaluate the classification method that achieved high classification accuracy.

Ten-fold and leave one out cross validation tests for Random Forest with three classes

(DME, AMD and normal) and two classes (disease and normal) on both datasets are per-

formed. The proposed method has achieved a success rate of more than 98% by Random

Forrest that is better than four state-of-the-art methods. We have evaluated the perfor-

mance of classification model using the same ten features with many machine-learning

algorithms such as AdaBoost, Decision tree, and support vector machine. Each method

has achieved excellent accuracy. This first method of a multi-classification model of eye

diseases based on the automatically-quantified clinically driven features indicates that a

quantified value of the eye status is achievable that can be used to monitor the progres-

sion or severity of eye diseases.
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9.1.4 OCTInspector A fully automated system based on the proposed meth-
ods

In this study, we have developed a fully automated software system for OCT image anal-

ysis using developed methods of retinal layer segmentation, CSI detection and biomark-

ers extraction. A user-friendly Graphical User Interface (GUI) has been developed from

where any kind of OCT image files such as image files (.png, .jpeg, .tif, etc.), Cirrus OCT

files (.img) and Spectralis OCT (Heidelberg Engineering) files (.vol) can be opened and

automatically segment the retinal layers, CSI and pathologies. In addition, it can compute

biomarkers such as cup-disc ratio, Bruch’s membrane opening minimum rim width, min-

imum distance band. The options of manual correction for retinal layers, CSI, pathologies

and cup-disc are provided in the system. This manual correction can be used for further

improvement of the automatic segmentation by learning the parameters of the proposed

method. These features and functionalities of the system have been described in Chapter

8 .

9.2 Future Research Direction

This section briefly describes some possible future research directions, which may come

out of this research work. The main and interesting problems are described in detail in

the following section.

9.2.1 Improving the algorithm addressing more pathological distortion by au-
tomatically modifying the parameters of the edge weight from the man-
ual correction

The proposed method has adapted the pattern of the layers in non-associativity edge

weight, one of three parameters of graph edge weights. This parameter can be used for

adapting new challenges due to a change of the dataset or presence of pathologies. In the

future, an automatic method can be defined for modifying the method by adding new

properties when there is an error, in conjunction with a semi-automatic method used for

the correction. Furthermore, a technique can be used to learn and adjust the coefficients

of the edge weight parameters from corrections of the incorrect segmentation produced
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from the proposed segmentation. This acquired edge weight would be useful for finding

the accurate boundary in the next execution and will be improved successively. This can

be achieved by using machine-learning methods or a parameter optimisation technique

such as simulated annealing. This would improve the image processing and segmenta-

tion of the retinal layers and the choroid.

9.2.2 Finding quantification value as a parameter about the condition of the
eye and finding new information about the disease progression and di-
agnosis

The proposed method has been used in quantification of eight biomarkers. This is an ini-

tial work towards quantifying other biomarkers. This can be extended to quantify other

biomarkers available in the SD-OCT images. In the future, large-scale studies can be con-

ducted for finding a quantification value for representing the eye condition which would

be a significant area of work in the field of ophthalmology. This digitised value of the eye

condition would be used for future research for finding the diagnosis of the eye disease

by analysing the progression of the diseases and medication. Currently, researchers in the

field of eye research face a lack of parameters to represent the eye status. This research

can improve the medical field specially ophthalmology.

9.2.3 Improving the segmentation algorithm by using multi-modal imaging

Multi-modal imaging is a method that uses more than one type of imaging in any par-

ticular task. For example, if Colour Fundus Photography (CFP) and SD-OCT imaging

are used to segment the ONH or blood vessel or pathologies, then that method is called

multi-modal segmentation model. Each kind of image has advantages in its field; for

example, blood vessels have a clearer contrast in CFP than SD-OCT B-scans: however,

SD-OCT images have depth information of the blood vessels. Therefore, for blood vessel

detection, the multi-modal technique would provide more information and improve the

accuracy. There are few methods that utilise a multi-modal technique for finding blood

vessels and ONH. In the future, pathologies or other substructures of the retina and the

choroid may be segmented by utilising multi-modal imaging. For example, angiography
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imaging with OCT imaging could be used for blood vessel segmentation and thus pro-

vide 3D mesh information correctly since angiography images show blood vessels more

clearly even in the presence of the pathologies.

9.2.4 Improving efficiency by exploiting Graphics Processing Unit (GPU) im-
plementation, Parallel Segmentation and deployed in the Cloud Envi-
ronment real-time application

Automatic methods must be highly efficient when targeting real-time usage on the gen-

eral population mass. Recent improvements in computer hardware offer very fast com-

putations, for example, Graphics Processing Unit (GPU) and parallel computing. GPU

systems would take a few seconds to make a computation that would otherwise have

taken several minutes in a normal system. Similarly, parallel computing also boosts the

efficiency of the algorithm. Since there are multiple layers and B-scans in OCT imaging,

the design of a segmentation algorithm in parallel computing with GPU implementation

would be a useful area of future research. Another future direction in the field of OCT

technology is developing a portable OCT device for image acquisition, in order to reach

people in remote areas without degrading the image quality (resolution) [8]. Therefore,

the automatic method should also be developed to be compatible with such a system

to promote large scale use. Since a segmentation algorithm needs a large amount of re-

sources (storage and computation), recent cloud computing technology can be exploited

to address this issue. Moreover, that technology is a suitable and practical platform for

providing services of retinal layer segmentation in smartphone-based systems, which are

limited in their memory capacities. Consequently, this is a future research topic: how to

use GPU, Parallel Computing and Cloud environment to serve as a mass screening sys-

tem.

Finally, the system can be utilised in future investigations not only for large-scale eye dis-

ease studies but also in longitudinal studies to evaluate/discover new biomarkers that

can help early detection of eye diseases and in monitoring eye disease progression. The

system can also be used to study drug response in large-scale studies as it can provide
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automatic analysis of disease progression.
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