## **Macular Edema**

José Cunha-Vaz

AIBILI - Coimbra, Portugal

Member of Advisory Boards: Alcon, Alimera, Allergan, Astellas, Bayer, GeneSignal, GSK, Novartis, Pfizer

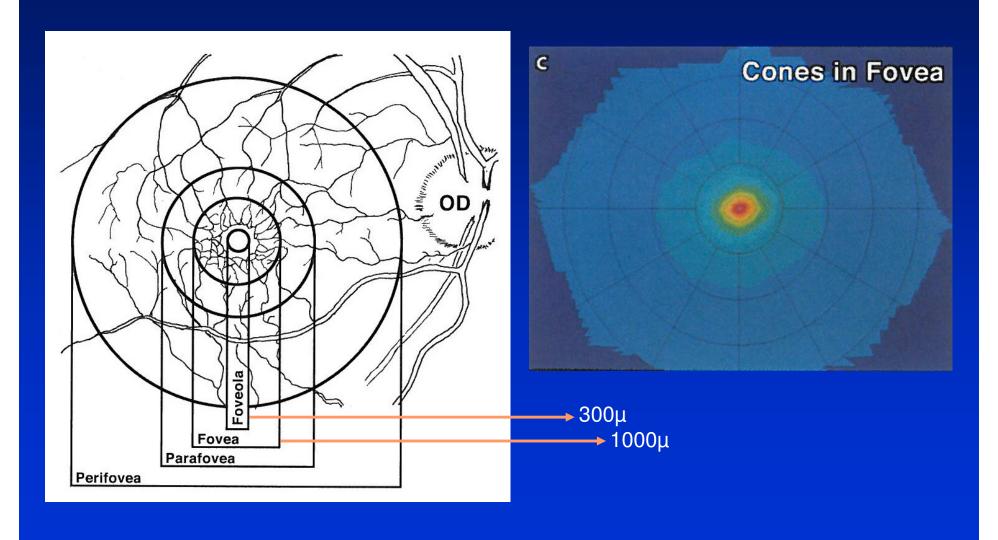
## **Macular Edema**

- 1. Definition Classification
- 2. Frequency Morbidity (DR, VO)
- 3. DR Clinical Evaluation Macular Edema as complication
- 4. Biomarkers of Progression
- 5. Pathogenesis
- 6. Treatment of Macular Edema

### 1. Definition / Classification

Non specific sign of ocular disease

Wide variety of situations:

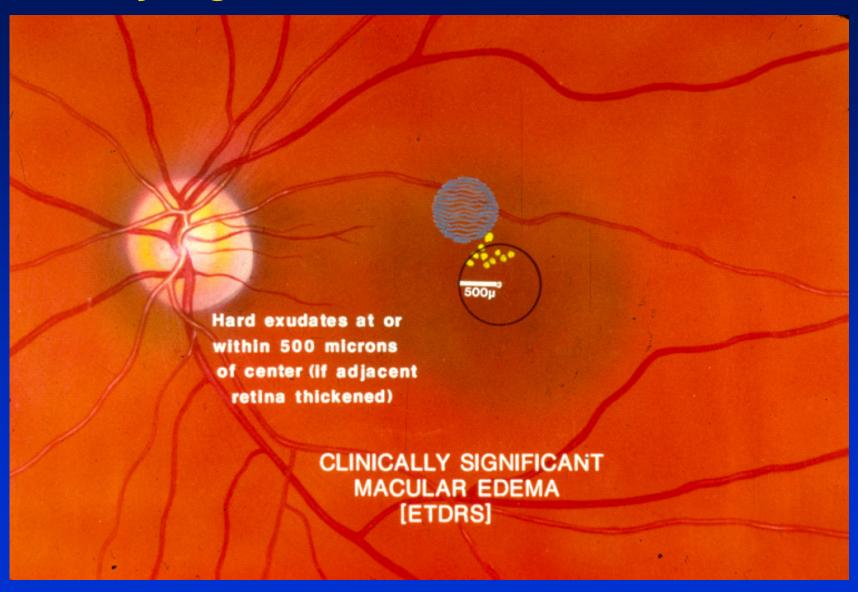

Diabetes, venous occlusions, trauma, uveitis, surgery, age-related macular degeneration, etc.

Retinal Edema = Increased thickening of the retina

Intracelullar

Extracelullar – due to a breakdown of the Blood-Retinal Barrier

#### Fovea - Macula




## Clinically Significant Macular Edema (ETDRS)

Relevance for Visual Acuity - Location

- 1. thickening of the retina at or within 500 μm of the center of the macula;
- 2. hard exudates at or within 500 µm of the center of the macula (if associate with thickening of the adjacent retina);
- 3. zone(s) of retinal thickening of 1 DD or larger, any part of which is within 1 DD of the center of the macula.

## Clinically Significant Macular Edema



#### **Clinical Evaluation of DME**

Replaced by objective measurements

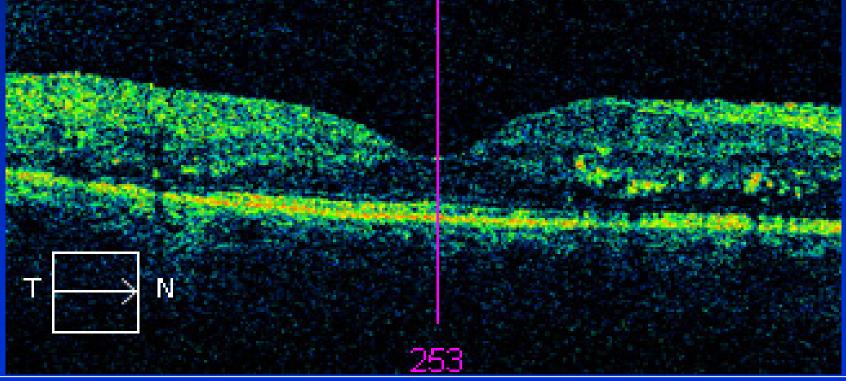
**Subjective** 

**Objective** 

**Ophthalmoscopy** 

Slit-lamp

Stereo photography




**Essential – Location of edema vs. fovea** 

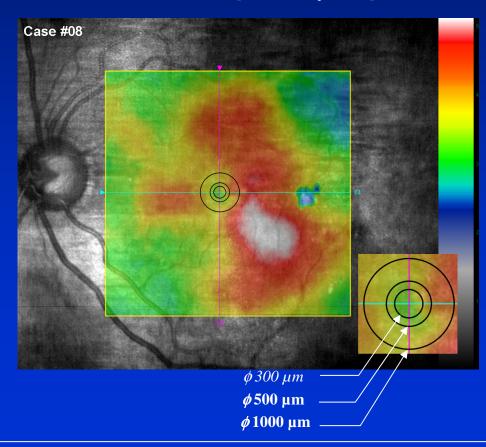
## **Amount of Edema**



|           | Central Subfield | Cube Volume | Cube Average   |
|-----------|------------------|-------------|----------------|
|           | Thickness (µm)   | (mm³)       | Thickness (µm) |
| ILM - RPE | 325              | 14.7        | 409            |



#### Location vs. Fovea


### **Mapping CSME**

With or Without Central Involvement (500 μm)

Fundus Photography

OCT – High Definition

- Spectral Domain



## **Proposed ME classification**

The proposed classification for DME in an individual patient comprises:

#### 1. Location of edema

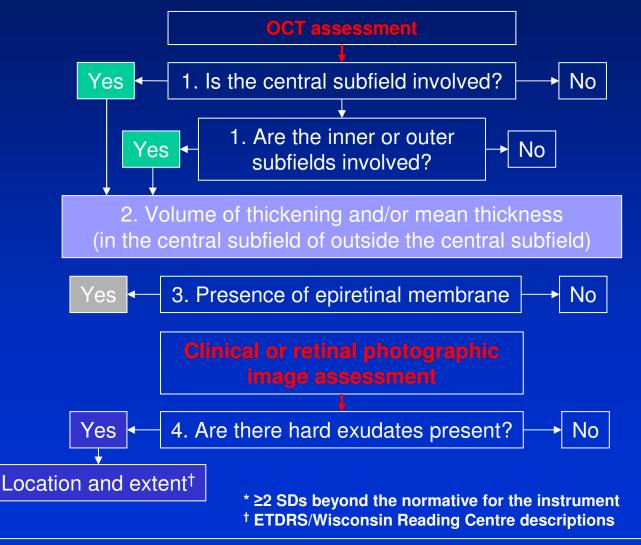
- Central-involved DME or
- Peri-central inner-involved DME or
- Peri-central outer-involved DME

#### 2. Amount of edema

 Mean thickness, volume and/or logOCT of location PLUS total volume of all 9 ETDRS subfields

#### 3. Vitreoretinal interface abnormalities

- Present/absent
  - Epiretinal membrane: present/absent/indeterminate
  - Posterior hyaloid detachment: present/absent/indeterminate


#### 4. Hard exudates

Present/absent in central subfield

#### **ME** classification

1. Location

- 3. Vitreo-retinal interface abnormalities
- 2. Amount of edema
- 4. Hard exudates



## 2. Frequency – Morbidity

- Diabetic retinopathy (DR) is a major cause of blindness and the primary cause of blindness in working-age individuals in developed countries<sup>1</sup>
- DME is a common manifestation of DR<sup>1,2</sup>
- DME is the main cause of visual impairment in patients with Type 2 diabetes<sup>1,2</sup>
- Although DME does not cause total blindness, it frequently leads to a severe loss of central vision<sup>1</sup>

DME, diabetic macular edema DR, diabetic retinopathy

<sup>1.</sup> Simo R and Hernandez C. Diabetologia 2008;51:1574–1580.

<sup>2.</sup> Simo R and Hernandez C. Diabetes Care 2009;32:1556-1562.

## **Epidemiological trends in diabetes and DME**

- Prevalence of diabetes expected to approximately double globally between 2000 and 2030<sup>1</sup>
- Number of diabetes cases estimated to reach 300 million worldwide by 2025<sup>2,3</sup>
- Burden of DME likely to increase due to predicted rise in diabetes prevalence<sup>3</sup>
- In the UK, prevalence of DME<sup>4</sup>:
  - Estimated to be 187,842 in 2010
  - Expected to increase to 235,602 in 2020
    - 1. Wild S et al. Diabetes Care 2004;27:1047–1053.
    - 2. King H et al. Diabetes Care 1998;21:1414–1431.
    - 3. Chen E et al. CMRO 2010;26:1587–1597.
    - 4. RNIB and EpiVision. 2009; Future sight loss UK (2): An epidemiological and economic model for sight loss in the decade 2010-2020. Full report <a href="http://www.rnib.org.uk/aboutus/Research/reports/2009andearlier/FSUK">http://www.rnib.org.uk/aboutus/Research/reports/2009andearlier/FSUK</a> 2.pdf

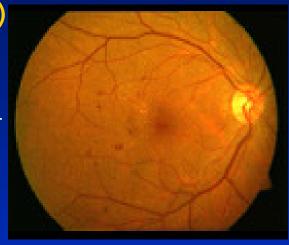
## **Venous Occlusions - Frequency**

Macular Edema - 5-15% BRVO

(over 1 year period)

- 18% achieves resolution by 4.5 months
- 41% achieves resolution by 7.5 months

## 3. Clinical characterization


### Diabetic retinopathy: a progressive disease

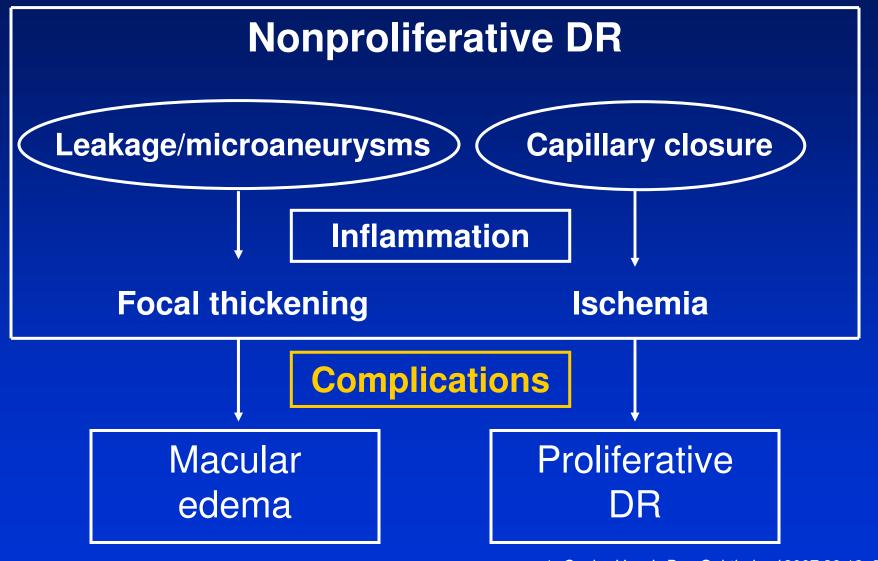
#### **Nonproliferative DR (NPDR)**

- Microaneurysms, intraretinal haemorrhages
- Barrier breakdown (leakage) exudates
- Capillary closure
- Complication DME

#### **Proliferative DR (PDR)**

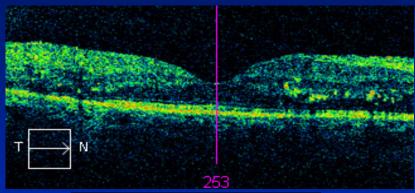
- Neovascularisation
- Vitreous/preretinal haemorrhage




#### **Symptoms**

- None
- Vision loss
- Glare




- None
- Vision loss
- Floaters
- 1. Wilkinson CP et al. Ophthalmology 2003;110:1677–1682.
- 2. Falcão M et al. Open Circulation and Vascular Journal 2010;3:30-42.

## Diabetic retinopathy (DR)



#### What is Diabetic Macular Edema?

DME can develop at any stage of DR and is the most common cause of visual loss in nonproliferative DR¹



 Retinal thickening due to accumulation of fluid



- Accumulation of **hard exudates**<sup>2</sup>
- Microaneurysms in the central 1000μ
- Severity of DME is based on distance of retinal thickening and/or exudates from the macular centre<sup>2</sup> Location to fovea
  - 1. Lang GE. Dev Ophthalmol 2007;39:48-68.
  - 2. Wilkinson CP et al. Ophthalmology 2003;110:1677–1682.

## **Evolution of DR: general clinical impression**

- <u>Different</u> evolution in different patients with similar metabolic control and duration of disease
- Not all patients develop persistent macular edema
- Not all patients develop neovascularization

## NPDR phenotypes: type 2 diabetes

| Phenotype A | <ul><li>Slow progression (&lt;2 red dots/year)</li></ul>  |  |
|-------------|-----------------------------------------------------------|--|
|             | <ul><li>Accelerated ageing process (diabetes)</li></ul>   |  |
| Phenotype B | ■ Rapid progression (>2 red dots/year)                    |  |
|             | ■ Increased flow                                          |  |
|             | <ul><li>Alterations of BRB – leakage</li></ul>            |  |
|             | ■ Increased retinal thickness — edema                     |  |
|             | <ul> <li>Haemodynamic changes predominate</li> </ul>      |  |
| Phenotype C | <ul><li>Rapid progression (&gt;2 red dots/year)</li></ul> |  |
|             | <ul><li>Decreased flow</li></ul>                          |  |
|             | ■ FAZ outline changes                                     |  |
|             | <ul> <li>Thrombotic changes predominate</li> </ul>        |  |

BRB, blood retinal barrier FAZ, foveal avascular zone

1. Cunha-Vaz J. Development Ophthalmology 2007;39:13-30.

## 4. Bimomarkers of Progression

## **Microaneurysm Turnover**

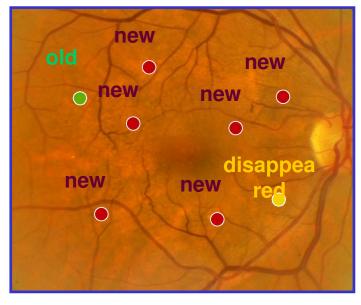
- Evaluation of Progression by counting microaneurysms (red dots) in sequential visits and identifying their exact location in the retina
  - Identifying new microaneurysms (formation rate)
    - Disease activity + Leakage
  - Identifying disapearing microaneurysm
     (disapearance rate) Capillary Closure

## Microaneurysm turnover Methods

#### MA Turnover - "Retmarker DR"



## Microaneurysm turnover Methods


#### MA Turnover - "Retmarker DR"

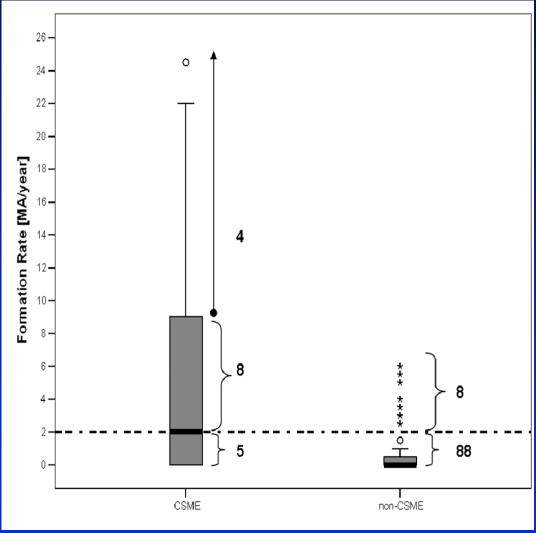
24-month

CFP 2-years follow-up



MA
Earmarking
For each visit




MA Formation rate of 4 MA/year

Microaneurysm turnover

**Results** 

- 17 patients with CSME (10-Year follow-up of 113 patients)
- Higher MA turnover p<0.001</li>
- MA turnover ≥ 2 MA/Y

**12/17** (70.6%) vs **8/96** (8,3%) P=0.002 vs p=0.647



Findings confirmed by Michael Ulbig et al., Munich, Germany.



#### **EVICR.net**

#### (European Vision Institute Clinical Research Network)

- Network of European certified clinical trial sites (75) from 16 European countries
- Centralized infrastructure

#### 6 Scientific Sections:

- ⇒ AMD and Retinal Dystrophies

- ⇒ Ocular Surface & Inflammation



#### 2. Protocol nº ECR-RET-2010-02

Title: Identifying progression of retinal disease in eyes with NPDR in diabetes type 2 using non-invasive procedures

ClinicalTrials.gov Identifier: NCT01145599

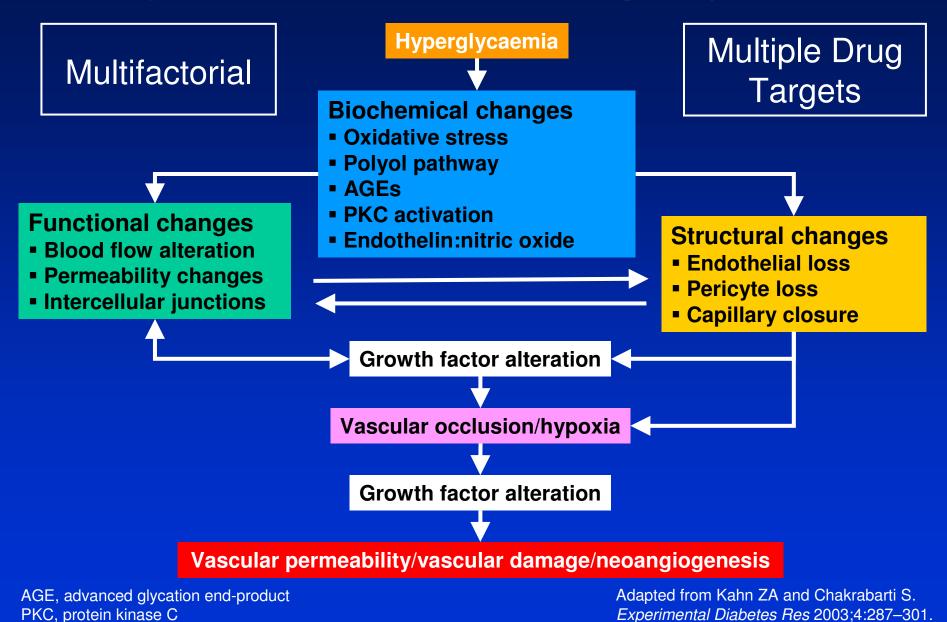
Principal Investigator: J. Cunha-Vaz

Nº Centres involved: 18 (450 patients)

- One year follow-up (0, 3, 6, 12 months)
- Centralized Reading Centre (CORC)

## **Progression to DME**

- Microvascular disease activity Fundus Photography
  - Microaneurysm Turnover Retmarker
- Increase in Retina Thickness OCT
- Association with vision loss
   (photoreceptors status) OCT


- BCVA -

## 5. Macular Edema - Pathogenesis

Breakdown of Blood-Retinal Barrier

- 1. Diabetes Multifactorial changes in the inner BRB
- 2. Venous Occlusion Hemodynamic factors
- 3. Associated role of inflammation and outer BRB

## Pathogenesis of diabetic retinopathy



**EU Regulatory Workshop – Ophthalmology** 

**EMA**, London, UK

27-28 October 2011

## Diabetic Macular Edema – Key points

- DME is a major cause of visual impairment in patients with diabetes
- Burden of DME likely to increase as prevalence of diabetes expected to rise by ~50% globally from 2000 to 2030
- Several biochemical factors and pathways are implicated in the development of DR and DME (complex association to mechanisms)
- VEGF plays a major role in the pathogenesis of DR complications
- The pathogenic profile varies among patients, leading to differing disease characteristics, requiring <u>personalised</u> <u>strategies</u> to manage the disease effectively

## 6. Treatment of Macular Edema

**Systemic** 

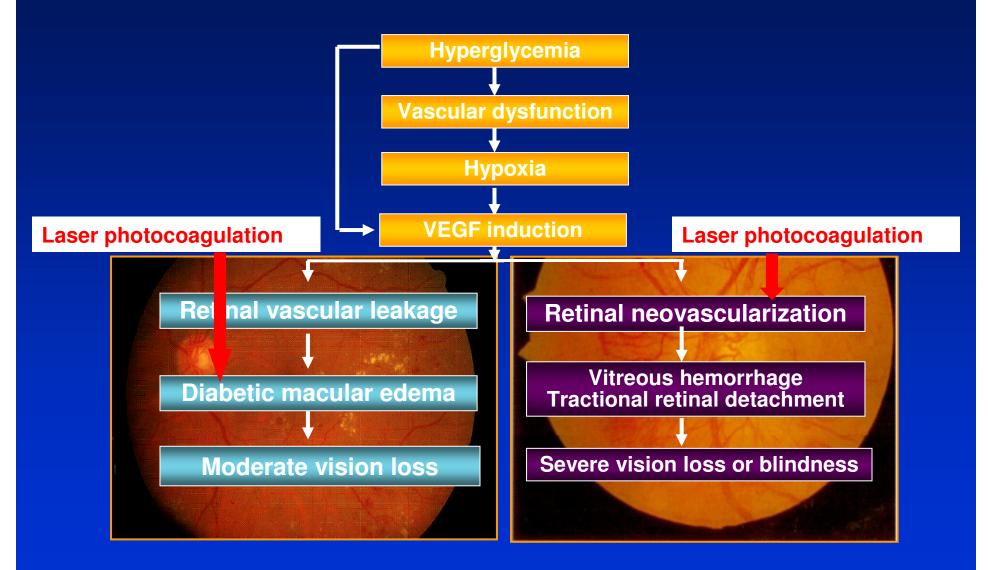
Local

Metabolic control

**Blood Pressure** 

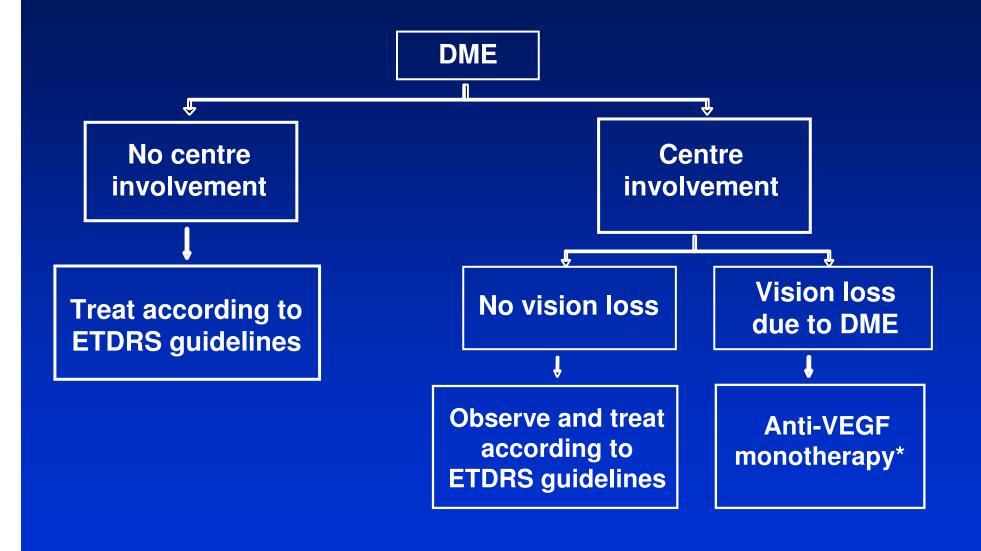
**Lipid Lowering** 

Laser: Conventional vs substreshold


Intravit. Antiangiogenics: Lucentis, etc

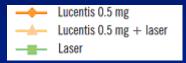
Intravit. Steroids: Osurdex, Iluvien, etc

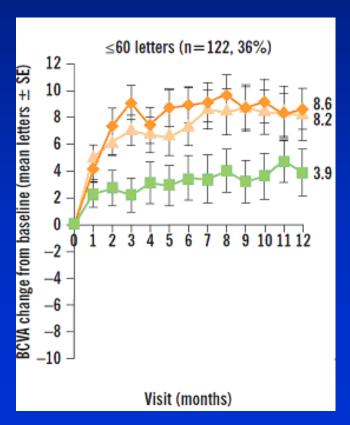
Combination Tx

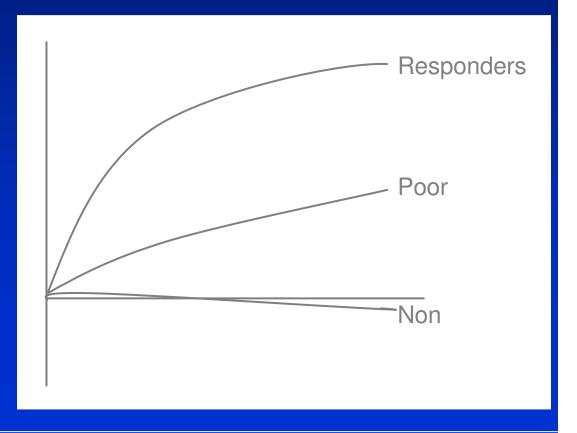

Vitrectomy – ILM (?)

## **Laser Management of DR**




Adapted from Sheetz MJ, King G. JAMA 2002;288:2579-2588.


#### **Present view of DME treatment**




## Different Responders to Anti-VEGF Treatment

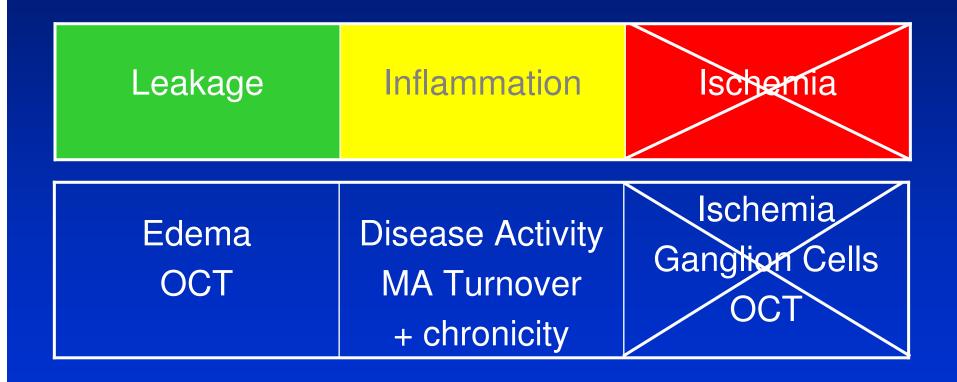
#### Visual Acuity – recovery of photoreceptor function



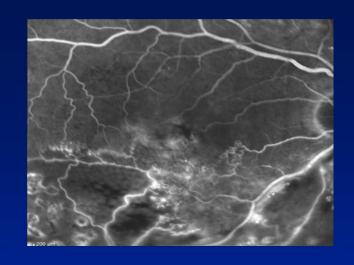




#### **Combination treatments for DME**


Anti-VEGF Loading dose 3-4 injections

Laser After 1st injection (one week)


Steroids for non-responders to anti-VEGF treatment

## **Characterization of Responders**

#### **Predominant Disease Mechanism**



# Treatment Macular Edema in Retinal Vein Occlusions



#### Macula perfused

#### **Neovascularization**

- Intravitreal steroids
- Anti-VEGF

- Intravitreal steroids

Macular ischemia

- Anti-VEGF

Scatter laser to area of ischemia Consider

- Intravitreal Steroids
- Anti-VEGF

Consensus Management VO. Ophthalmologica 2011,226(4).

#### **Macular Edema Treatment**

Depends of response to treatment

**Visual Acuity Improvement** 

Photoreceptors status

**Retinal Tickness (Edema)** 

Leakage intra-retinal fluid

subretinal fluid (VA)

#### **Macular Edema**

- 1. Definition based on OCT (non-invasive, objective)
- 2. Increasing frequency
- 3. Different patients Different rates of progression
- 4. Microaneurysm Turnover Biomarker in diabetes
- 5. Pathogenesis Complex/Alt of Blood-Retinal Barrier
- Treatment of Macular Edema Personalized / Response to Tx

→ Combination Therapy